Autoregressive modeling
Autoregressive models [12] factorize the joint distribution over structured outputs into products of conditional distribution. Unlike GANs [9], these can serve as powerful density estimators [14], are more stable during training [13,14], and can generalize well on held-out data. They have been successfully leveraged for modeling distributions across domains, such as images[5,12,13], video, or language [16], and our work explores their benefits across a broad range of 3D generation tasks.
Following their recent successes in autoregressive modeling[3,16] our work adapts a Transformer-based [17] architecture. However, these approaches cannot directly be adopted to volumetric 3D representations due to their high resolutions. We build on the work by van den Oord et.al. [15] who proposed a method to learn quantized and compact latent representations for images using Vector-Quantized Variational AutoEncoder (VQ-VAE). Inspired by Esser et.al. [7] who learned autoregressive generation over the discrete VQ-VAE representations, our work extends these ideas to the domain of 3D shapes.
Shape Completion
Completing full shapes from partial inputs such as discrete parts, or single-view 3D, is an increasingly important task across robotics and graphics. Most recent approaches [1,4,18] formulate it as performing completion on point clouds and can infer plausible global shapes but have difficulty in either capturing fine-grained details, conditioning on sparse inputs, or generating diverse samples. Our work proposes an alternative approach using autoregressive shape priors.
Single View Reconstruction
Inferring the 3D shape from a single image is an inherently ill-posed task. Several approaches have shown impressive single-view reconstruction results using voxels [6,8], point clouds [11,19], and most recently implicit representations of 3D surfaces like SDFs [10,20] etc. However, these are often deterministic in nature and only generate a 3D single output. By treating image-based prediction as conditional distributions our work can capture the multi-modal aspect of conditional generation in a simple and elegant manner.
Language based Generation
Language is a highly effective and parsimonious modality for describing real world shapes and objects. Chen et.al [2] proposed a method to learn a joint text-shape embedding, followed by a GAN [9] based generator for synthesizing 3D from text. However, generating shapes from text is a fundamentally multi-modal task, and a GAN based approach struggles to capture the multiple output modes. In contrast, our project aims to first learn a ‘naive’ language guided conditional distribution and combine it with shape priors to generate diverse and plausible shapes.
References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations and generative models for 3d point clouds. In ICML, 2018.
[2] Kevin Chen, Christopher B Choy, Manolis Savva, Angel X Chang, Thomas Funkhouser, and Silvio Savarese. Text2shape: Generating shapes from natural language by learning joint embeddings. In ACCV, 2018.
[3] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever. Generative pretraining from pixels. In ICML, 2020.
[4] Xuelin Chen, Baoquan Chen, and Niloy J Mitra. Unpaired point cloud completion on real scans using adversarial training. In ICLR, 2020.
[5] Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel. Pixelsnail: An improved autoregressive generative model. In ICML, 2018
[6] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-r2n2: A unified approach for single and multi-view 3d object reconstruction. In ECCV, 2016.
[7] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high resolution image synthesis. In CVPR, 2021.
[8] Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, and Jitendra Malik. Multi-view supervision for single-view reconstruction via differentiable ray consistency. In CVPR,2017.
[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014.
[10] Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker. Sdfdiff: Differentiable rendering of signed distance fields for 3d shape optimization. In CVPR, 2020.
[11] Priyanka Mandikal, Navaneet K. L., Mayank Agarwal, and Venkatesh Babu Radhakrishnan. 3d-lmnet: Latent embedding matching for accurate and diverse 3d point cloud reconstruction from a single image. In BMVC, 2018
[12] Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. In ICML, 2016
[13] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. Pixelcnn++: A pixelcnn implementation with discretized logistic mixture likelihood and other modifications. In ICLR, 2017
[14] Benigno Uria, Iain Murray, and Hugo Larochelle. Rnade: The real-valued neural autoregressive density-estimator. In NeurIPS, 2013.
[15] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning. In NeurIPS, 2017.
[16] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understanding. NeurIPS, 2019.
[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ćukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017
[18] Linqi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation and completion through point-voxel diffusion. In ICCV, 2021.
[19] Rundi Wu, Yixin Zhuang, Kai Xu, Hao Zhang, and Baoquan Chen. Pq-net: A generative part seq2seq network for 3d shapes. In CVPR, 2020.
[20] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. Disn: Deep implicit surface network for high-quality single-view 3d reconstruction. In NeurIPS, 2019.