

Vision-Language-Augmented Multi-Modal Multi-Agent Motion Prediction

Presenter: Patrick Chen

Supervised by Prof. Katia Sycara, Yaqi Xie

12/12/2025

Outline

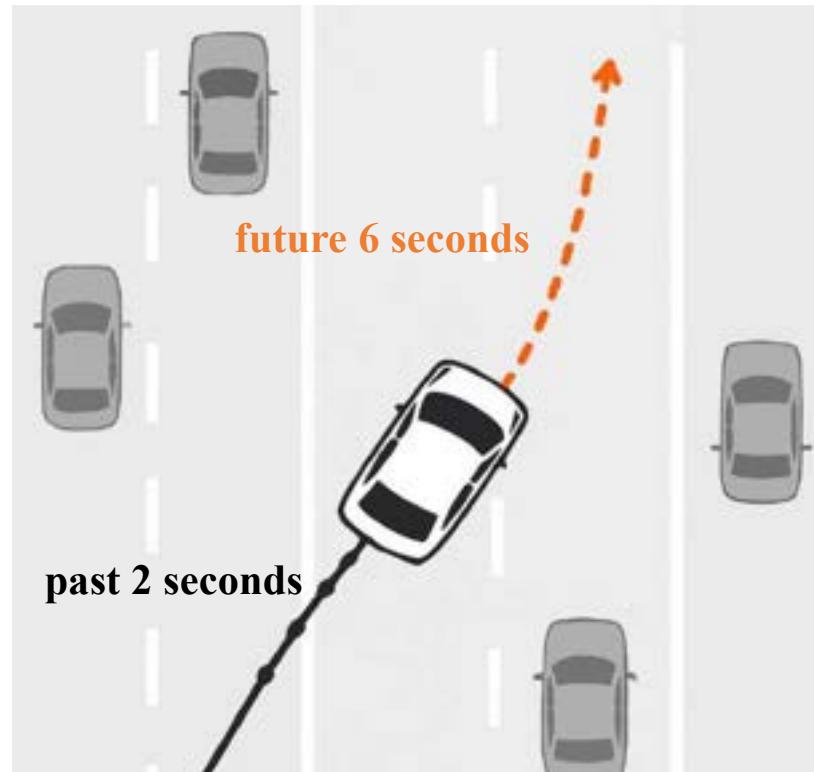
- Introduction & Motivation
- Related Work
- Proposed Method
- Results
- Conclusion & Summary

Outline

- Introduction & Motivation
- Related Work
- Proposed Method
- Results
- Conclusion & Summary

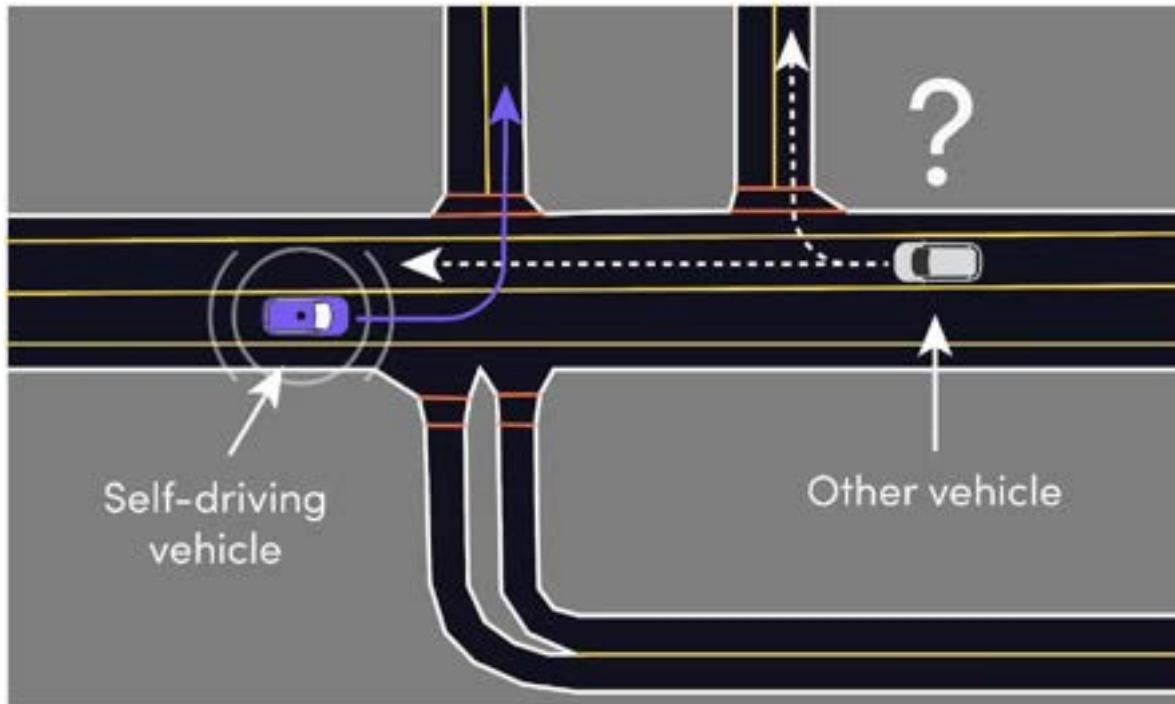
What is Motion Prediction?

- Goal: Given past trajectories, predict future motion of road agents.
 - Typical setting:
 - Past: N_s history (e.g. $N=2$, given 2s history)
 - Future: X_s prediction horizon (e.g. $X=6$, predict future 6s)
 - Each agent history is a sequence of (x, y) positions in bird-eye-view (BEV).



Multi-Agent Motion Prediction

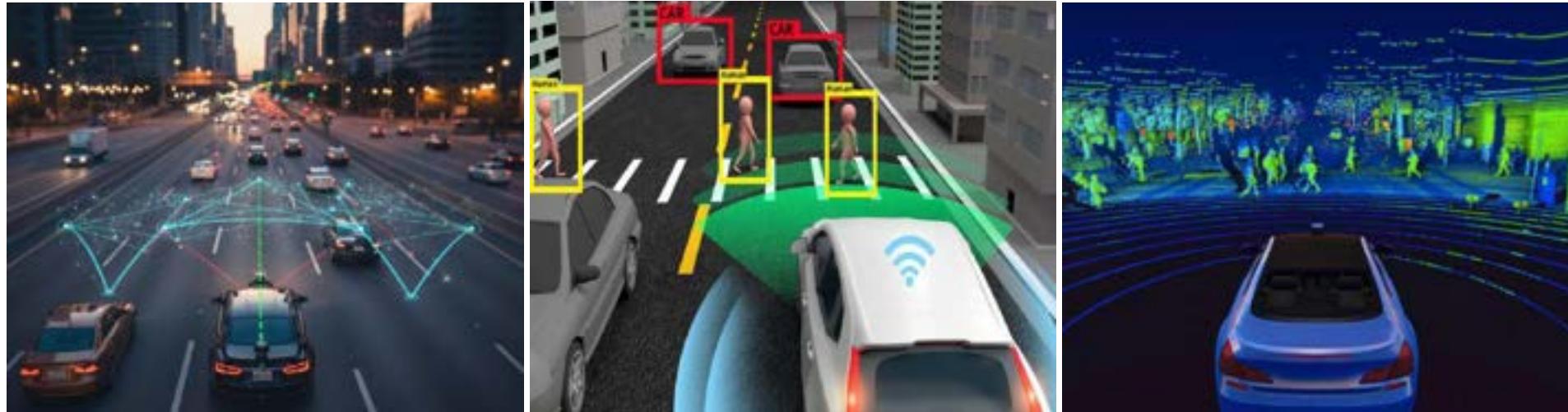
- Real scenes have multiple interacting agents (cars, trucks, pedestrians)
- Multi-agent motion prediction: predict all agents' future trajectories jointly
- Model must:
 - Capture inter-agent interactions (following, yielding, merging)
 - Understand the scene context (lanes, intersections, barriers)



[1]. <https://medium.com/wovenplanetlevel5/how-to-build-a-motion-prediction-model-for-autonomous-vehicles-29f7f81f1580>

Motivation: Why Multi-Modal + Multi-Agent?

- Multi-modal perception is critical
 - Individual trajectory history of each agent is important.
 - Multi-agent interactions matter.
 - Camera gives rich semantics (lanes, traffic lights, signs, road markings).
 - LiDAR provides accurate geometry and distance, robust under lighting changes.
 - Knowledge to the scene context is another vital information.
- Our goal: learn a multi-modal model that jointly reasons about all agents' future trajectories



[2]. <https://www.rsipvision.com/adas-sensors-lidars/>

Outline

- Introduction & Motivation
- Related Work
- Proposed Method
- Results
- Conclusion & Summary

Related Work

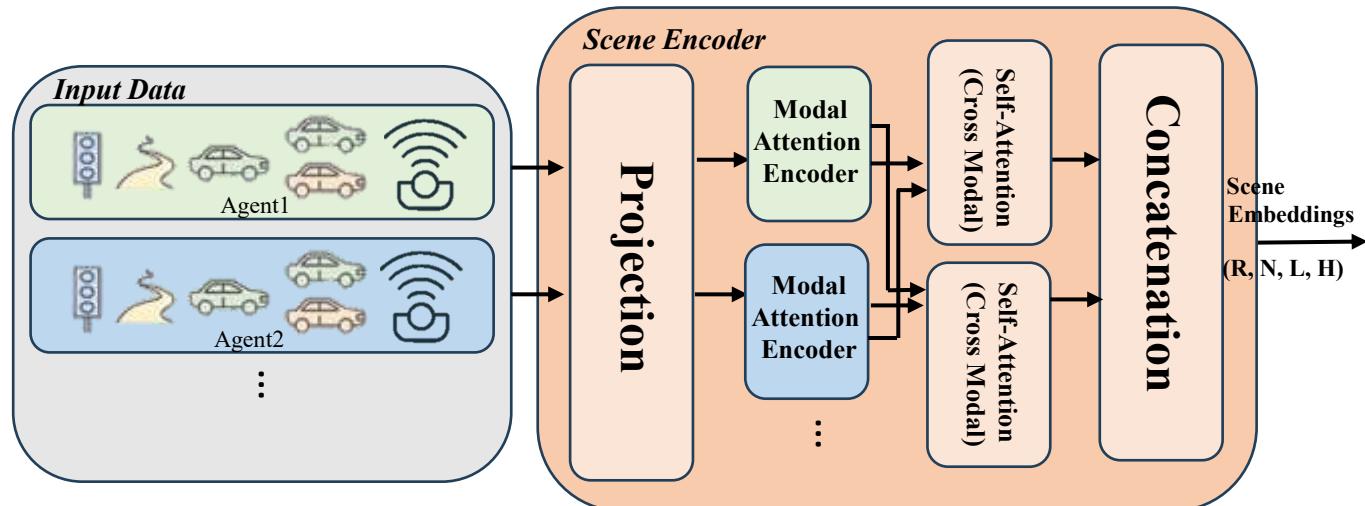
- This project builds on the following related works:
 - LLM-Augmented MTR [6] – Leverages GPT-4V with TC-Map BEV renderings and prompts to inject traffic knowledge into motion forecasting.
 - DGCN_ST_LANE [4] – Lane-based multi-agent trajectory prediction that uses a dynamic graph convolutional network over lane graphs to model agent history and inter-agent interactions.
 - THOMAS [2] – ICLR 2022 multi-agent predictor that outputs future trajectories as heatmaps and learns a combination module to sample scene-consistent, collision-free joint trajectories.
 - CASPFormer [5] – BEV-image transformer with deformable attention that performs multi-modal motion prediction from rasterized BEV context, achieving state-of-the-art results on nuScenes.

Outline

- Introduction & Motivation
- Related Work
- Proposed Method
- Results
- Conclusion & Summary

Proposed Method (1/3)

- Input Data - all inputs are projected into a unified embedding space.
 - Agent State History - past positions and headings
 - Lane Centerlines - lane center positions from HD maps
 - Traffic Light Signals - current state and spatial position
 - Agent Interactions – relative position vectors to nearby agents
 - Sensor Data – ego camera images and LiDAR point clouds
- Scene Encoder
 - Each modality above is encoded individually, and then fused via cross attention among modals to produce a unified scene embedding capturing spatial context for all agents with shape (R, N, L, H) . Here, R refers to the number of rollouts, N refers to the number of agents, L is the length of the sequence, and H is the hidden dimension.



Proposed Method (2/3)

- Decoder

- Dual Attention Fusion:** Scene and traffic-rule embeddings are fused using bi-directional cross-attention to ensure both modalities are integrated into the prediction process.

- Autoregressive Generation:** The decoder generates predictions autoregressively, attending to previous tokens with self-attention and integrating scene and traffic-rule information through cross-attention.

- Training & Inference:** During training, teacher forcing is used. During inference, the model generates predictions step-by-step using its own previous outputs.

- Output:** The decoder produces motion predictions for agents over time, with output shape (R,N,T,2):

R: Number of rollouts (distinct predictions),

N: Number of agents,

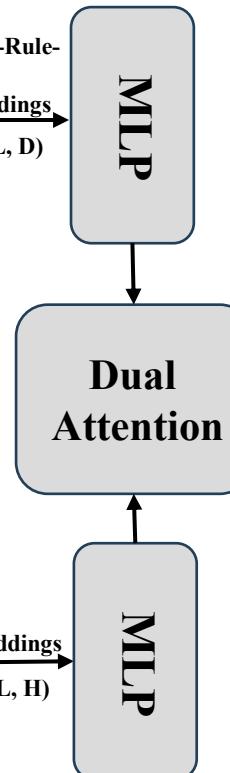
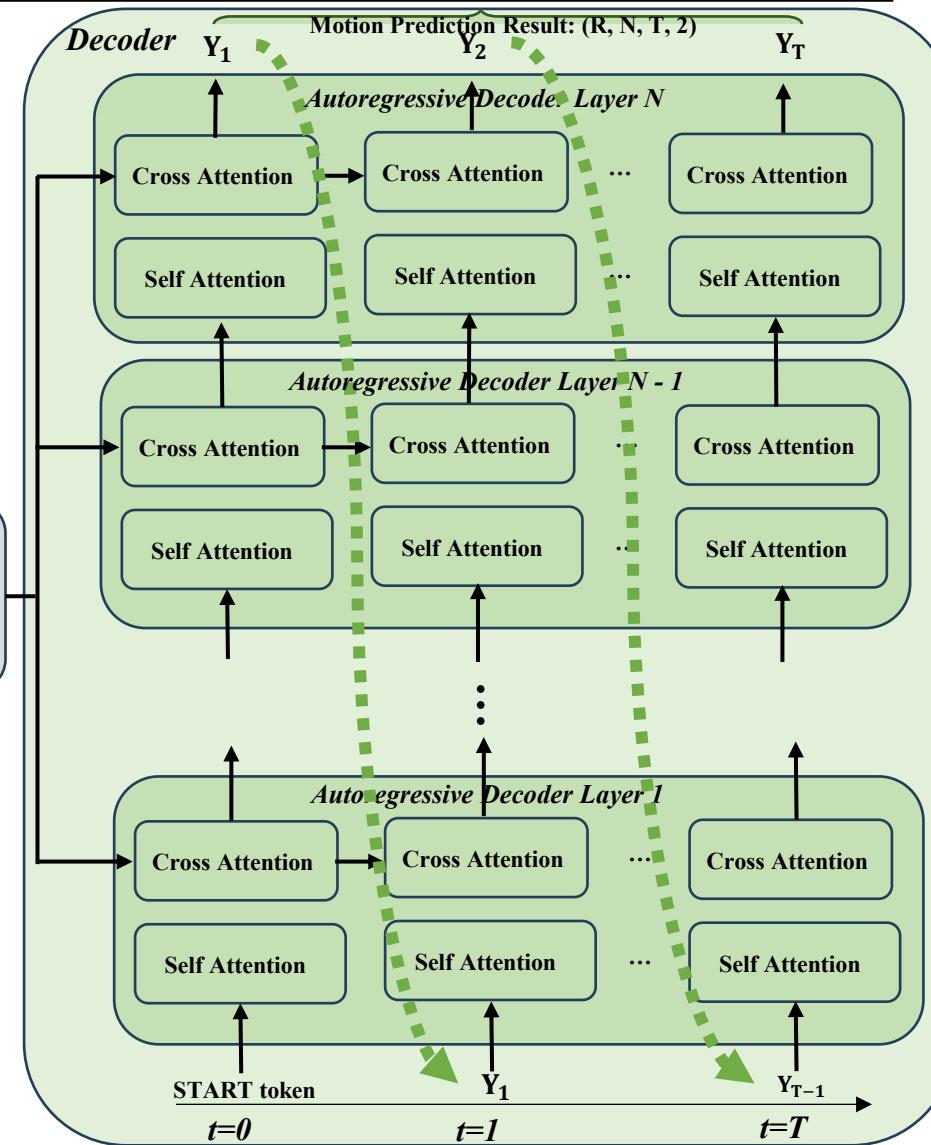
T: Number of time steps,

2: Predicted x and y coordinates for each agent.

$$\mathcal{L}_{\text{motion}} = - \sum_{t=1}^T \sum_{n=1}^N \log p_{\theta}(a_t^n \mid A_{\leq t}, S)$$

Traffic-Rule-Aware Embeddings
(R, N, L, D)

Scene Embeddings
(R, N, L, H)



Proposed Method (3/3)

Overall Model Architecture

Input Data

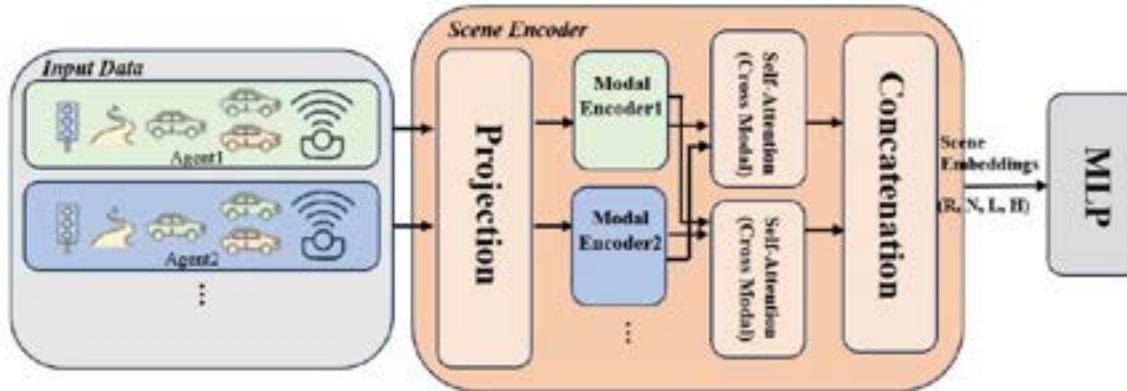
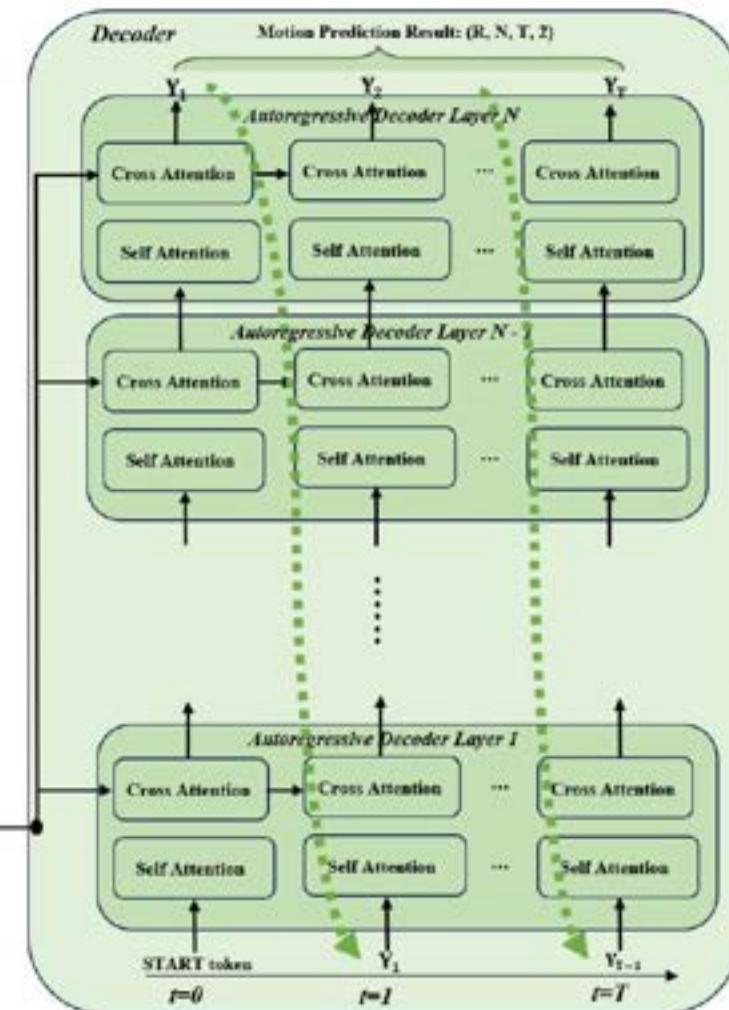
- Agent State History - past positions and headings
- Lane Centerlines - lane center positions from HD maps
- Traffic Light Signals - current state and spatial position
- Agent Interactions – relative position vectors to nearby agents
- Sensor Data – ego camera images and LiDAR point clouds

Scene Encoder

- Each modality is encoded individually, and then fused via cross attention to a unified embedding.

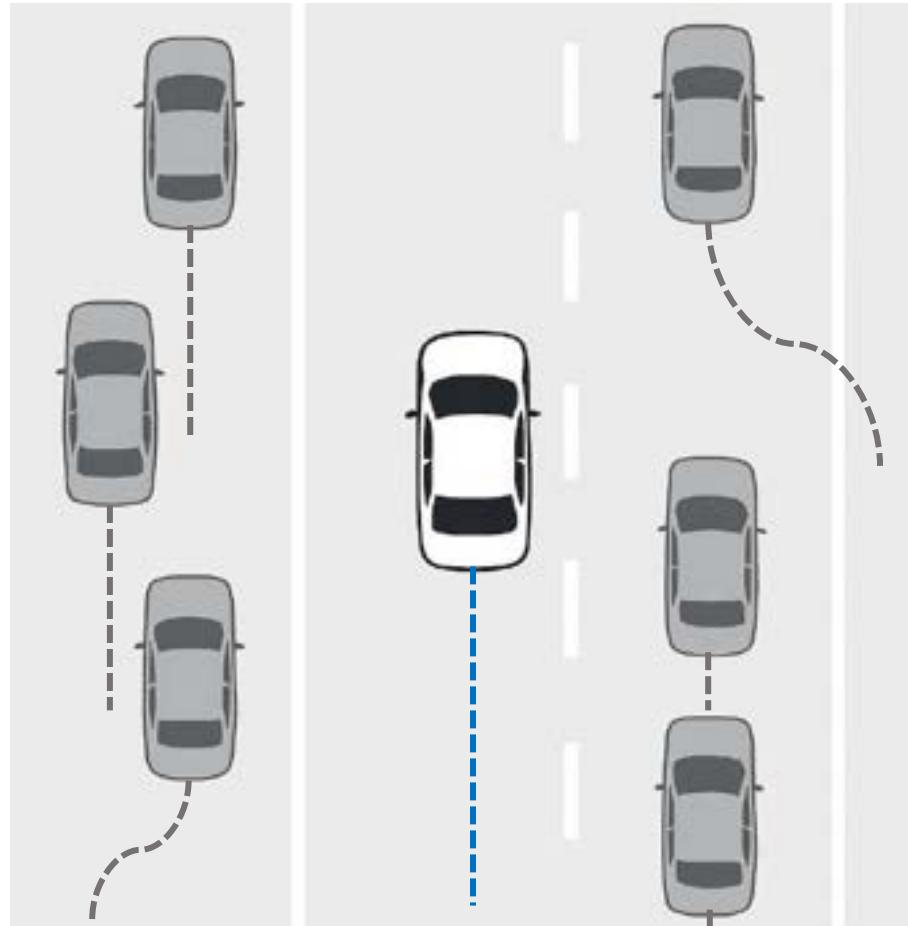
Decoder

- Autoregressive Generation:** The decoder generates predictions autoregressively, attending to previous tokens with self-attention and integrating scene information through cross-attention.
- Training & Inference:** During training, teacher forcing is used with MSE Loss. During inference, the model generates predictions step-by-step using its own previous outputs.



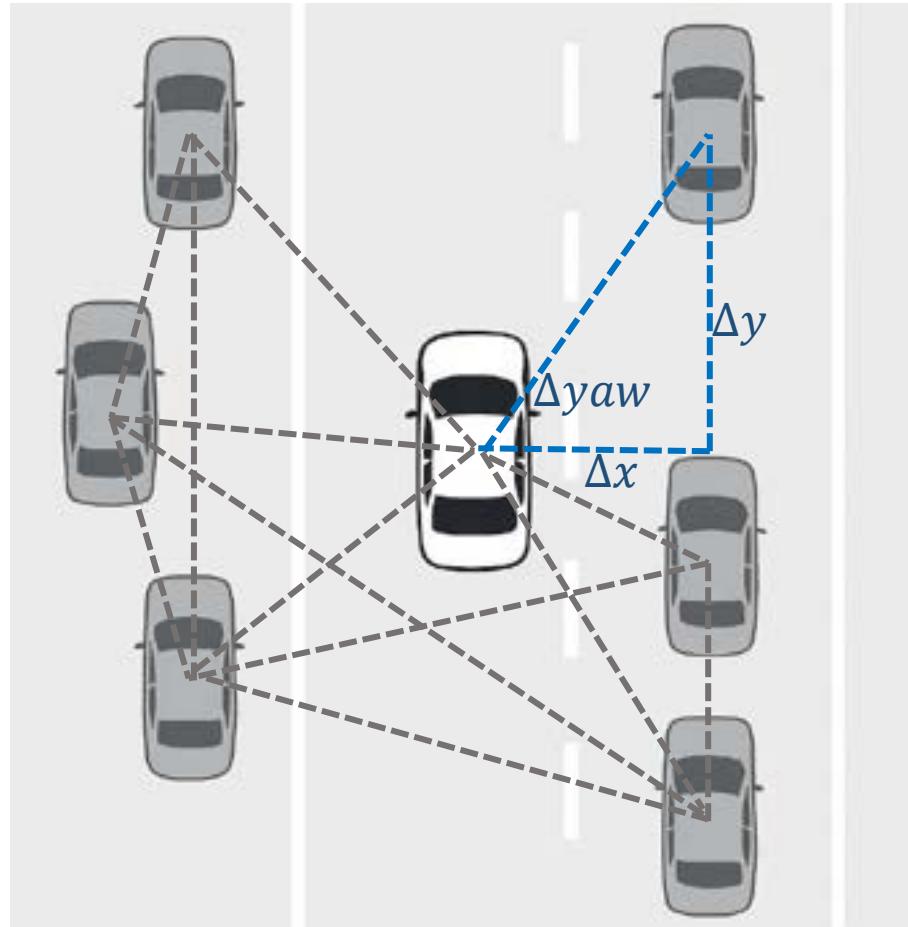
What We Have Done So Far (1/5)

- Baseline 1: Uni-Modal (History only)
 - Use each agent's trajectory history
 - Use GRU network to encode each agent's trajectory history



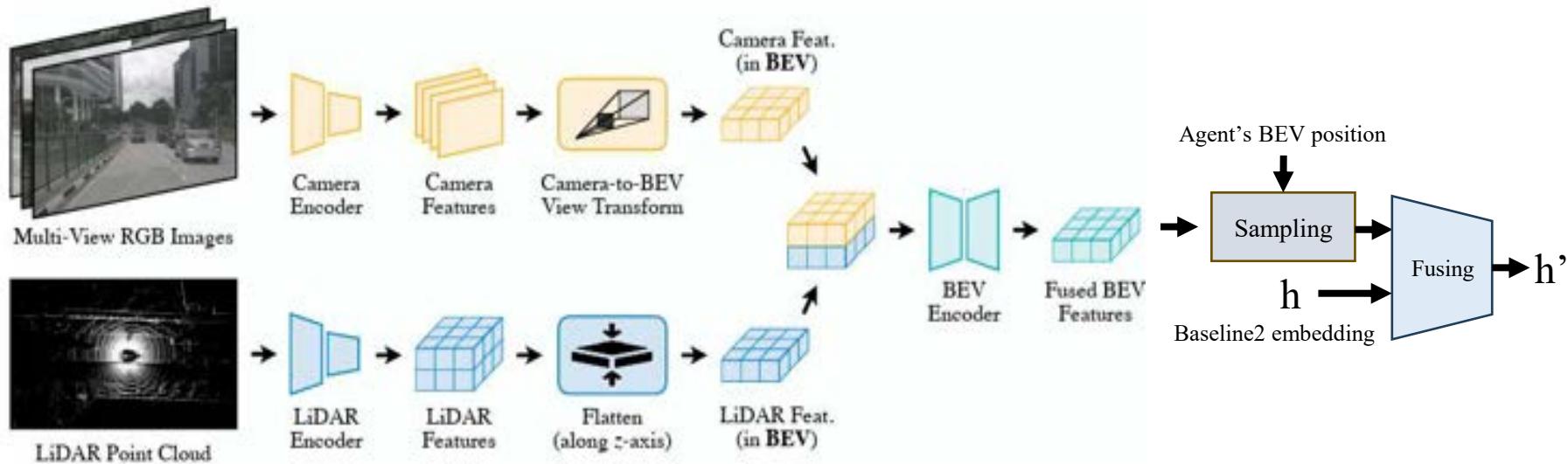
What We Have Done So Far (2/5)

- Baseline 2: History + Multi-Agent Relationships
 - Use each agent's geometry relationship: $[\Delta x, \Delta y, \Delta \text{yaw}, \Delta v_x, \Delta v_y, \Delta a_x, \Delta a_y]$
 - Use attention to encode each agent's relationship embedding



What We Have Done So Far (3/5)

- Baseline 3: History + Multi-Agent Relationship + BEV Fusion
 - Use ego car's camera image + LiDAR sensors
 - Use BEV Fusion framework
 - Extract each agent's BEV feature through back projection and sampling and then fuse together with previous embeddings.

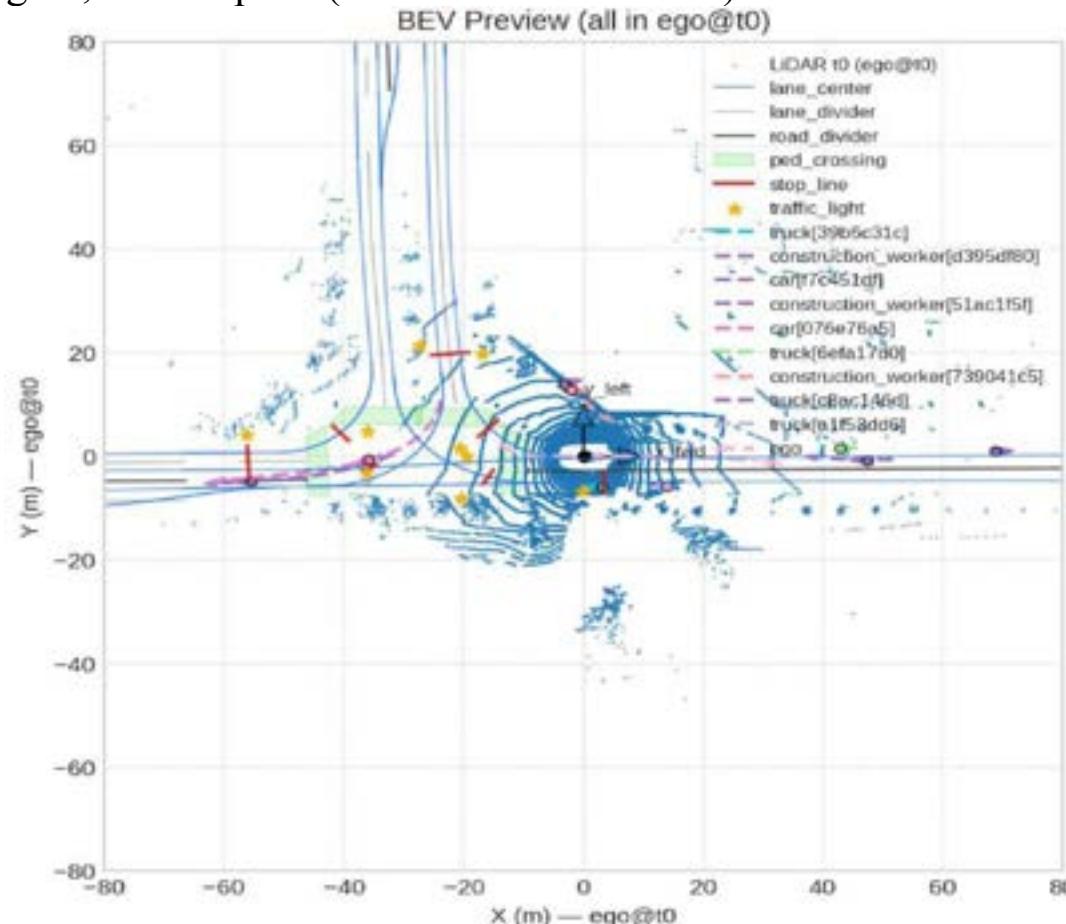


[3]. Z. Liu et al., "BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation", NeurIPS 2022.

What We Have Done So Far (4/5)

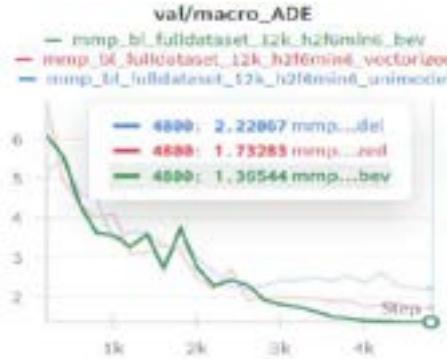
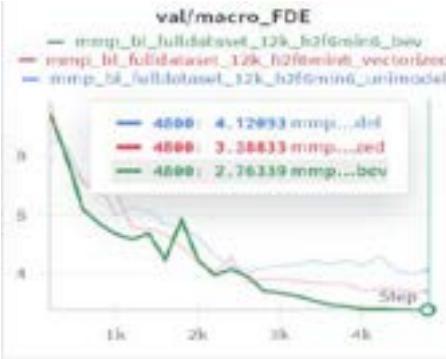
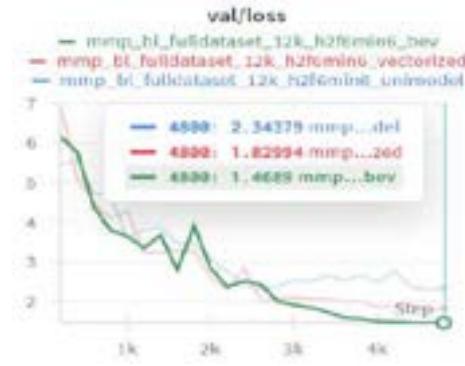
- Dataset Generation: nuScenes

- Sweep the whole nuScenes dataset with past 2s and future 6s context window
- Define BEV region to be x: [-80m, 80m], y: [-80m, 80m]
- Generating 12,782 samples. (8-1-1 for train-val-test)



What We Have Done So Far (5/5)

- Quantitative Results



Method	ADE	FDE
nuScenes Leaderboard		
DGCN_ST_LANE (Agent History + Agent Relationship)	1.092	3.624
DSS	1.192	6.640
CASPFormer (Agent History + Agent Relationship + Image)	1.148	6.702
Ours Method		
Baseline1: Uni-model (Agent History)	2.221	4.121
Baseline2: Agent History + Agent Relationship	1.733	3.388
Baseline3: Agent History + Agent Relationship + BEV	1.365	2.763

What We Did Next

- Upgrade the encoder:
 - Make the model learn the world dynamics.
 - Make the model learn the traffic rules.

What We Did Next

- Upgrade the encoder:
 - Make the model learn the world dynamics.
 - Make the model learn the traffic rules.

JEPA SSL Pretraining

Architecture for the world model: JEPA

- ▶ JEPA: Joint Embedding Predictive Architecture.
- ▶ x : observed past and present
- ▶ y : future
- ▶ a : action
- ▶ z : latent variable (unknown)
- ▶ $D(\cdot)$: prediction cost
- ▶ $C(\cdot)$: surrogate cost
- ▶ JEPA predicts a representation of the future S_y from a representation of the past and present S_x

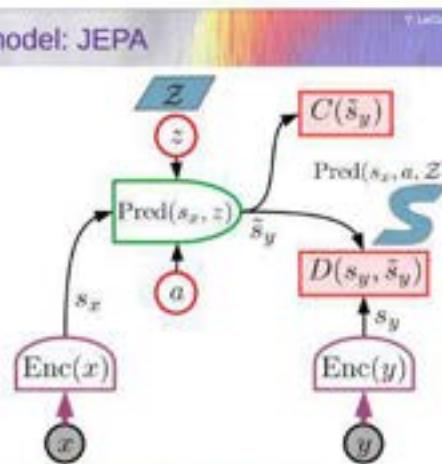
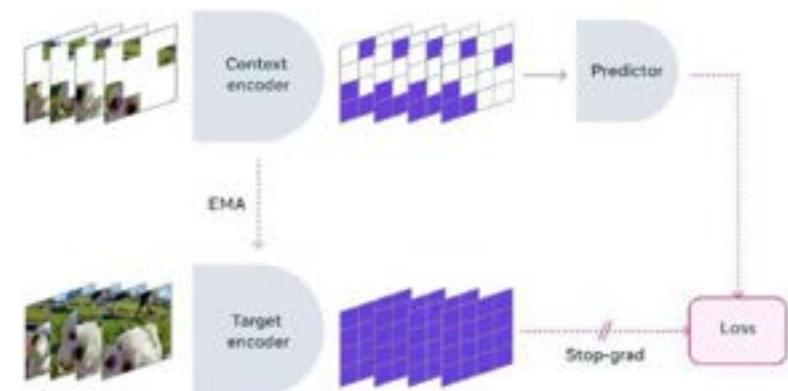
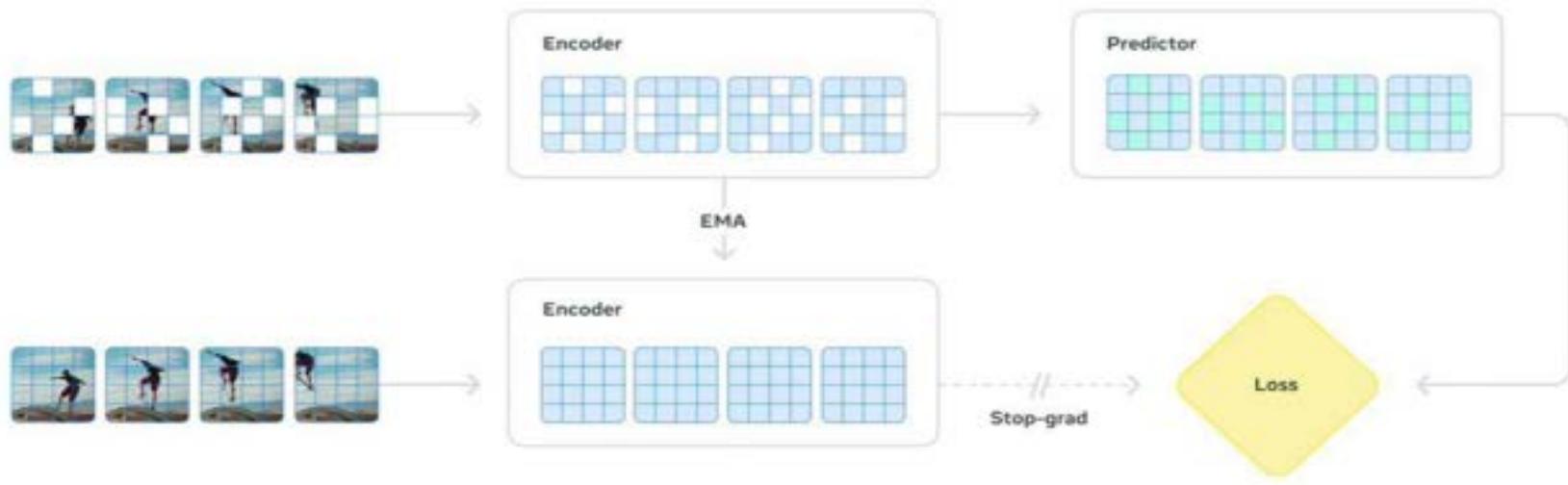


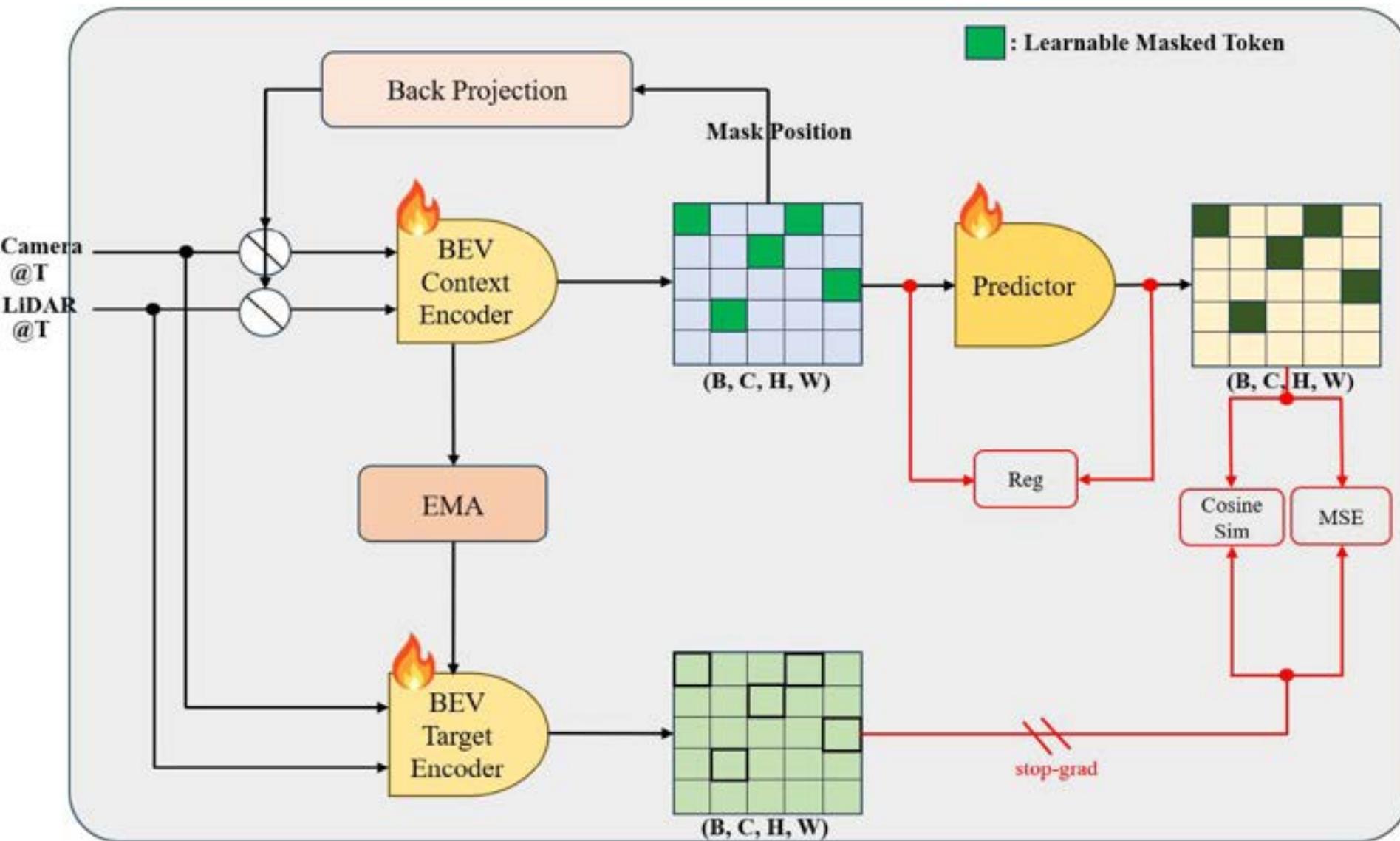
Image Credit: [Yann LeCun's Harvard presentation \(March 28, 2024\)](#).

— V-JEPA trains a visual encoder by predicting masked spatio-temporal regions in a learned latent space.

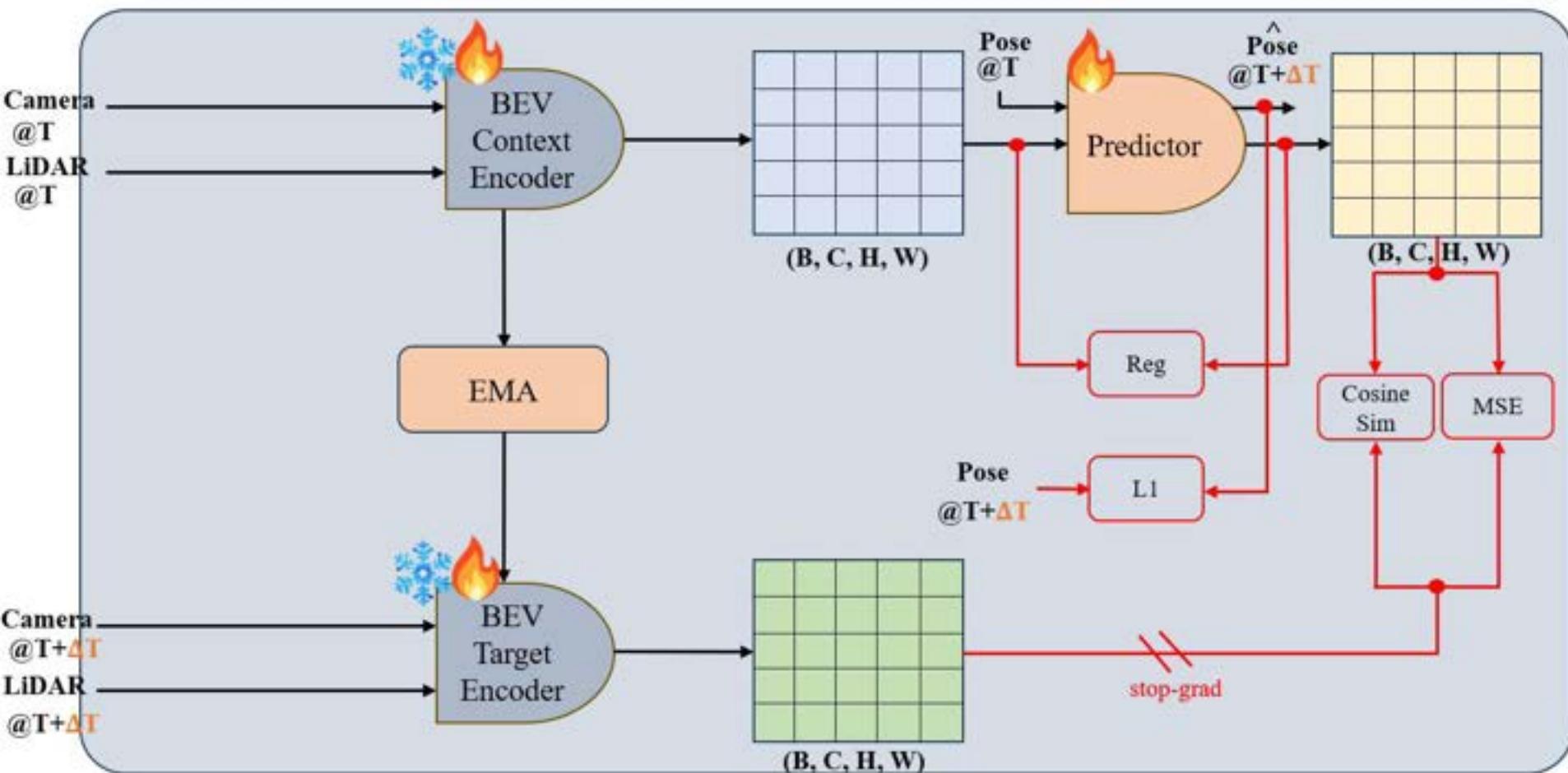


[4]. <https://ai.meta.com/research/publications/revisiting-feature-prediction-for-learning-visual-representations-from-video/>
 [5]. <https://ai.meta.com/blog/v-jepa-2-world-model-benchmarks/>

JEPA SSL Pretraining – Stage1 Spatial Pretraining



JEPA SSL Pretraining – Stage2 Temporal Pretraining



Fine-Tuning Stage



Fine-Tuning Stage

- JEPA [9] shows good visual recognition results on various downstream tasks.

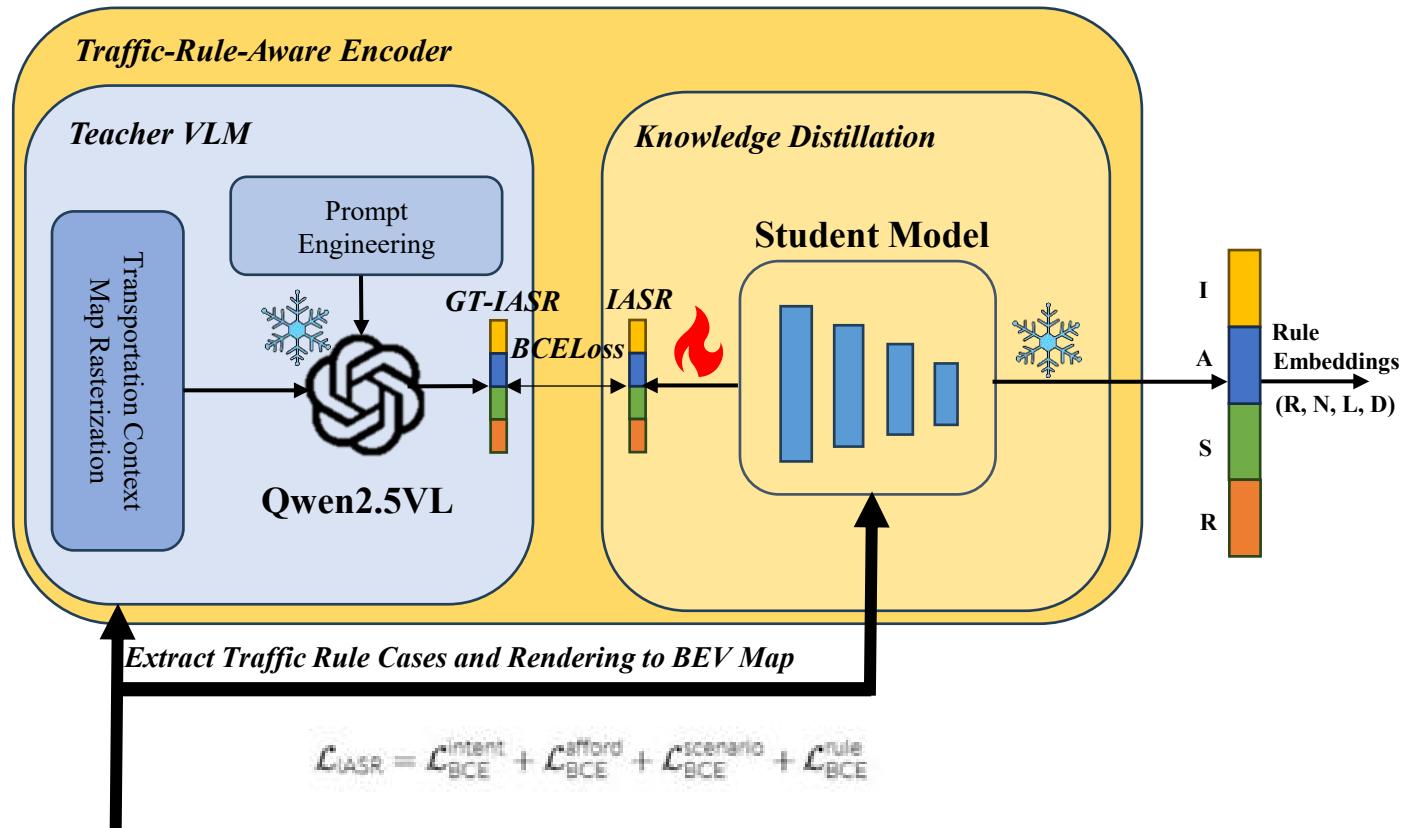
Method	Arch.	Params.	Data	Video Tasks			Image Tasks		
				K400 (16×8×3)	SSv2 (16×2×3)	AVA	IN1K	Places205	iNat21
<i>Methods pretrained on Images</i>									
I-JEPA	ViT-H/16 ₅₁₂	630M	IN22K	79.7	50.0	19.8	84.4	66.5	85.7
OpenCLIP	ViT-G/14	1800M	LAION	81.8	34.8	23.2	85.3	70.2	83.6
DINOv2	ViT-g/14	1100M	LVD-142M	83.4	50.6	24.3	86.2	68.4	88.8
<i>Methods pretrained on Videos</i>									
MVD	ViT-L/16	200M	IN1K+K400	79.4	66.5	19.7	73.3	59.4	65.7
OmniMAE	ViT-H/16	630M	IN1K+SSv2	71.4	65.4	16.0	76.3	60.6	72.4
VideoMAE	ViT-H/16	630M	K400	79.8	66.2	20.7	72.3	59.1	65.5
VideoMAEv2	ViT-g/14	1100M	Un.Hybrid	71.2	61.2	12.9	71.4	60.6	68.3
Hiera	Hiera-H	670M	K400	77.0	64.7	17.5	71.4	59.5	61.7
V-JEPA	ViT-L/16	200M		80.8	69.5	25.6	74.8	60.3	67.8
	ViT-H/16	630M	VideoMix2M	82.0	71.4	25.8	75.9	61.7	67.9
	ViT-H/16 ₃₈₄	630M		81.9	72.2	25.0	77.4	62.8	72.6

What We Did Next

- Upgrade the encoder:
 - Make the model learn the world dynamics.
 - Make the model learn the traffic rules.

VLM Knowledge Distillation (1/4)

- We rendered BEV map from input data and craft prompt together and sent to Qwen2.5VL model to extract traffic rule embedding, and treat it as a teacher to distill the information through supervised training a student model. During inference, we directly use the rendered BEV map and the frozen student model to output the calculated traffic rule embedding.



VLM Knowledge Distillation (2/4)

- Proposed IAS Embedding:

$$\{\text{intention_type}, \text{affordance_type}, \text{scenario_type}\} \in R^{27}$$

```
intention_type = {
    0: "KEEP_LANE_OR_GO_STRAIGHT",
    1: "PREPARE_OR_DO_LEFT_TURN",
    2: "PREPARE_OR_DO_RIGHT_TURN",
    3: "STOP_FOR_TRAFFIC_CONTROL",
    4: "STOP_FOR_PEDESTRIAN_OR_OBJECT",
    5: "PULL_OVER_OR_PARK_LEGAL",
    6: "STATIONARY_IN_LANE_ABNORMAL",
    7: "U_TURN_OR_LANE_CHANGE"      # U-turn
}
```

```
affordance_type = {
    0: "CAN_GO_STRAIGHT",
    1: "CAN_TURN_LEFT",
    2: "CAN_TURN_RIGHT",
    3: "FRONT_BLOCKED_BY_OBSTACLE",
    4: "FRONT_BLOCKED_BY_RULE",
    5: "MUST_STOP_AT_STOP_LINE",
    6: "MUST_YIELD_TO_PEDESTRIAN",
    7: "MUST_YIELD_TO_ONCOMING",
    8: "LANE_CHANGE_ALLOWED",
    9: "ROADSIDE_STOP_ALLOWED"
}
```

```
scenario_type = {
    0: "STRAIGHT_FREE_FLOW_ROAD",
    1: "INTERSECTION_SIGNALIZED",
    2: "INTERSECTION_STOP_OR_YIELD",
    3: "PEDESTRIAN_CROSSING_ZONE",
    4: "MERGE_OR_ONRAMP_OR_RAMP",
    5: "PARKING_OR_DRIVEWAY_AREA",
    6: "ROADSIDE_OR_SHOULDER",
    7: "COMPLEX_MULTI_AGENT_NEGOTIATION",
    8: "UNSURE"
}
```

VLM Knowledge Distillation (3/4)

- Proposed Traffic Rules Embedding:

$$\{\text{traffic_rules}\} \in R^9$$

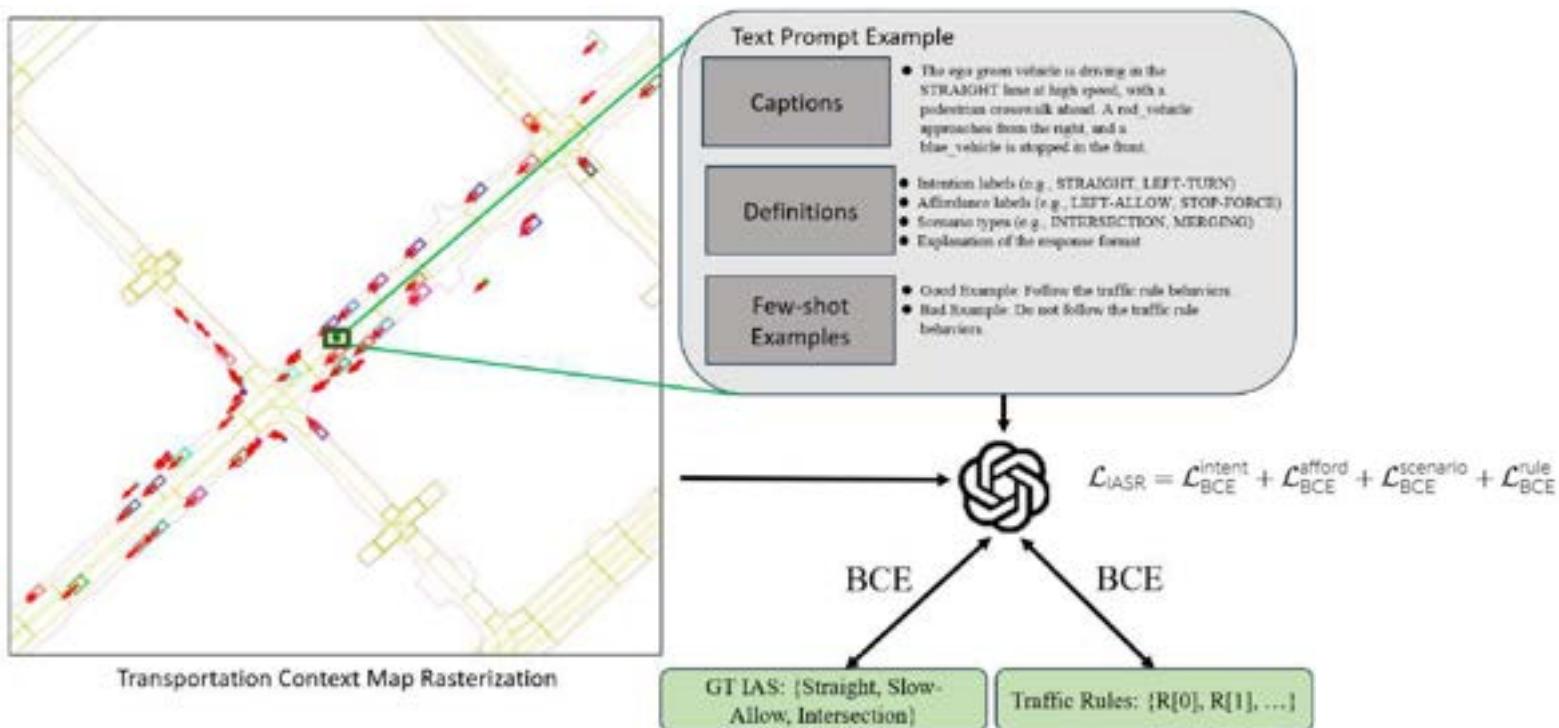
```

TRAFFIC_RULES = {
    0: "RULE_STOP_LINE_AHEAD",
    # A visible STOP LINE lies ahead along the current lane direction.
    1: "RULE_MUST_STOP_BEFORE_STOP_LINE",
    # The agent is approaching an intersection with a STOP LINE and
    # should come to a complete stop before crossing that line.
    2: "RULE_TRAFFIC_LIGHT_AHEAD",
    # A TRAFFIC LIGHT icon is located ahead at the intersection that
    # controls this approach (state unknown; we only know it exists).
    3: "RULE_CROSSWALK_AHEAD",
    # A CROSSWALK (green shaded area) lies ahead on the agent's lane.
    4: "RULE_AGENT_ON_OR_BLOCKING_CROSSWALK",
    # Some traffic agent (colored dot) is currently inside, entering,
    # or stopped on the CROSSWALK area.
    5: "RULE_INTERSECTION_CONFLICT_ZONE_AHEAD",
    # The agent's lane is entering an intersection region where lane
    # centers from other directions cross, creating potential conflicts.
    6: "RULE_TURN_MUST_YIELD_TO_THRU_TRAFFIC",
    # The agent is making a turning movement across another stream
    # of traffic that continues straight; the straight-moving traffic
    # has priority.
    7: "RULE_THRU_LANE_HAS_PRIORITY",
    # The agent is on a main through lane (straight lane center passing
    # through the junction), and crossing/merging side approaches should yield.
    8: "RULE_NO_STOPPING_IN_THRU_LANE",
    # The agent is currently in the middle of a through lane, away from
    # STOP LINE / CROSSWALK / intersection entries; stopping here is not allowed.
}

```

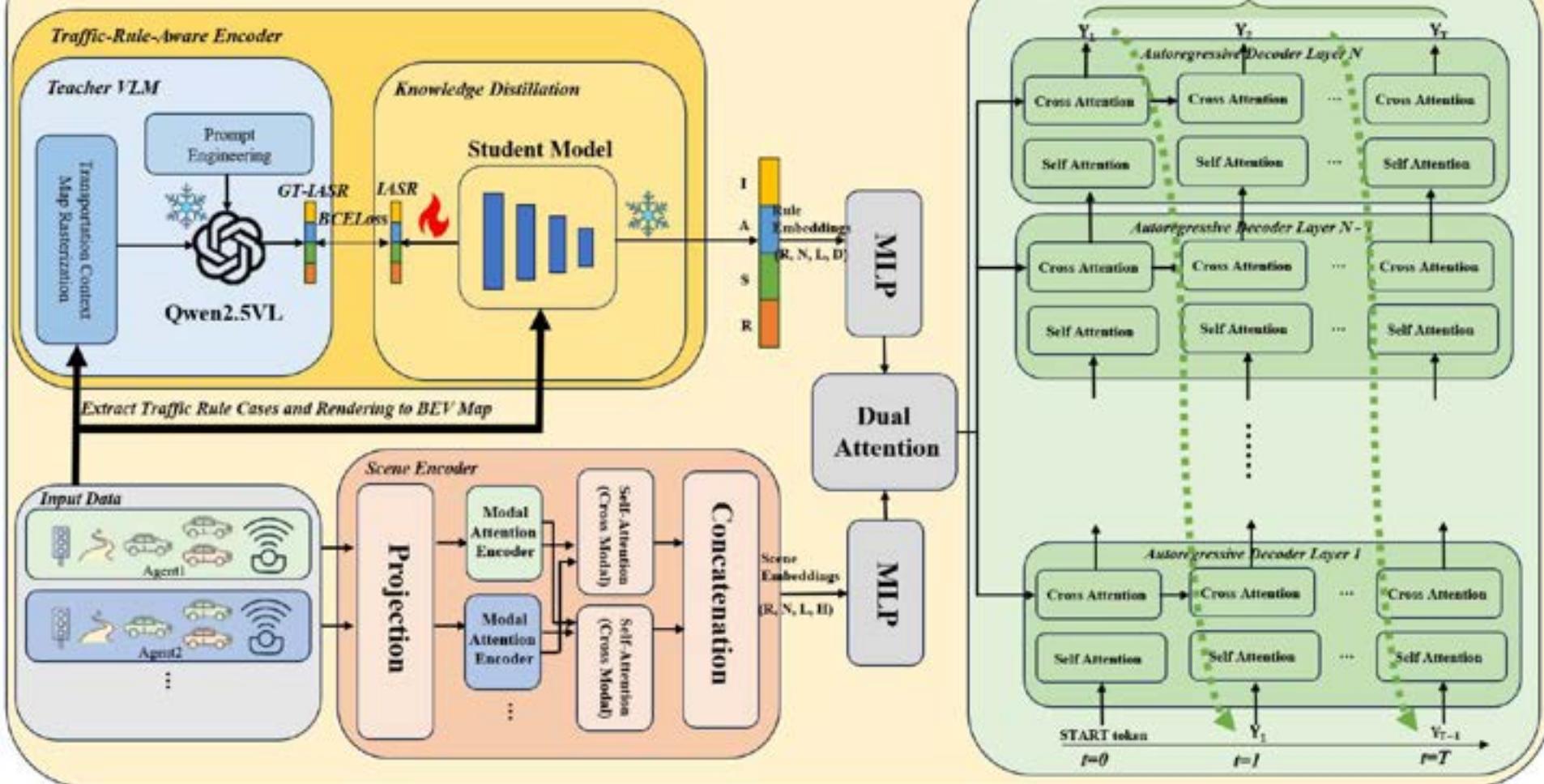
VLM Knowledge Distillation (4/4)

- The prompts are crafted with an auto-generated scene caption, predefined label categories, traffic rules, and a strict response format [7]. Few-shot examples are included to guide consistent outputs.
- Definition of output traffic-rule-aware embedding:
 - Intentions (I): Agent's intended motion (e.g., STRAIGHT, LEFT-TURN, STOP) encoded as a weighted one-hot vector R^8 .
 - Affordances (A): Legality/feasibility of actions (e.g., LEFT-ALLOW, STOP-FORCE) encoded as a binary vector R^{10} .
 - Scenario Types (S): High-level context (e.g., INTERSECTION, MERGING) encoded as a binary vector R^9 .
 - Rules(R): Traffic rules to drive IAS decisions (e.g., STOP-LINE-AHEAD, NO-STOPPING), encoded as a binary vector R^9 .



Put It Together: The Whole Proposed Model

Model Architecture



Outline

- Introduction & Motivation
- Related Work
- Proposed Method
- Results
- Conclusion & Summary

Results: Knowledge Distillation

A4:

I=[0.9, 0.1, 0, 0, 0, 0, 0, 0, 0] → GO STRAIGHT
 A=[1, 0, 0, 0, 0, 0, 0, 0, 0] → CAN GO STRAIGHT
 S=[1, 0, 0, 0, 0, 0, 0, 0, 0] → STRAIGHT ROAD
 R=[0, 0, 0, 0, 0, 0, 0, 1, 1] → THRU LANE PRIORITY,
 NO STOP THRU LANE
 A0:

I=[0.9, 0.1, 0, 0, 0, 0, 0, 0, 0] → GO STRAIGHT
 A=[1, 0, 0, 0, 0, 0, 0, 0, 0] → CAN GO STRAIGHT
 S=[1, 0, 0, 0, 0, 0, 0, 0, 0] → STRAIGHT ROAD
 R=[0, 0, 0, 0, 0, 0, 0, 1, 1] → THRU LANE PRIORITY,
 NO STOP THRU LANE

Knowledge Distillation Result from Qwen2.5VL-32B-Instruct

A4:

I=[0, 0, 0, 0, 0, 0, 0, 1.0] → U-TURN OR LANE CHANGE
 A=[1, 0, 0, 0, 0, 0, 0, 0, 0] → CAN GO STRAIGHT
 S=[0, 0, 0, 0, 0, 0, 0, 0, 0] → NO OUTPUT
 R=[1, 0, 0, 0, 0, 0, 0, 0, 0] → RULE STOP LINE AHEAD
 A0:

I=[0, 0, 0, 0, 0, 0, 0, 1.0] → U-TURN OR LANE CHANGE
 A=[1, 0, 0, 0, 0, 0, 0, 0, 0] → CAN GO STRAIGHT
 S=[0, 0, 0, 0, 0, 0, 0, 0, 0] → NO OUTPUT
 R=[1, 0, 0, 0, 0, 0, 0, 0, 0] → RULE STOP LINE AHEAD

Knowledge Distillation Result from Qwen2.5VL-7B-Instruct

Results: Motion Prediction

- Metrics

- We evaluate with three standard metrics: minADE, minFDE, and MR, averaged over all agents. Let $p_t^k = (x_t^k, y_t^k)$ be the predicted position at time t for rollout k , and p_t^* the ground-truth.
 - minADE: Best average L2 distance over T steps across k rollouts:

$$\min_k \frac{1}{T} \sum_{t=1}^T \|p_t^k - p_t^*\|_2$$

- minFDE: Best final-step L2 distance across k rollouts:

$$\min_k \|p_T^k - p_T^*\|_2$$

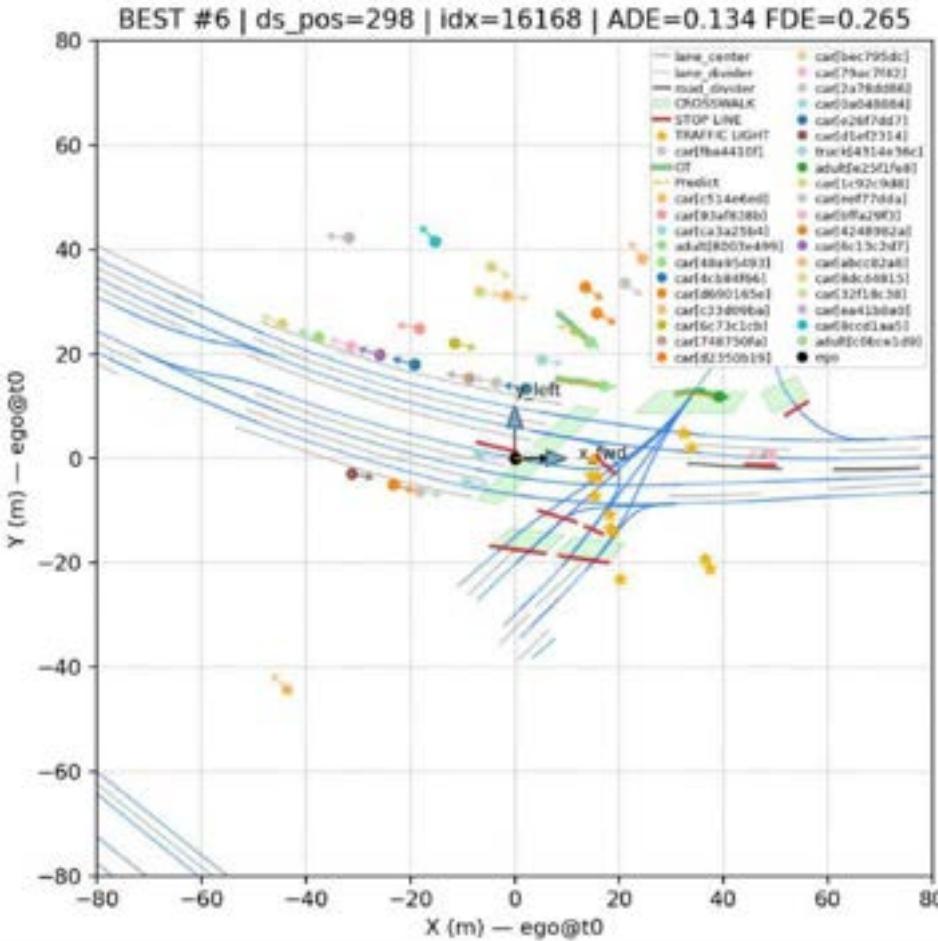
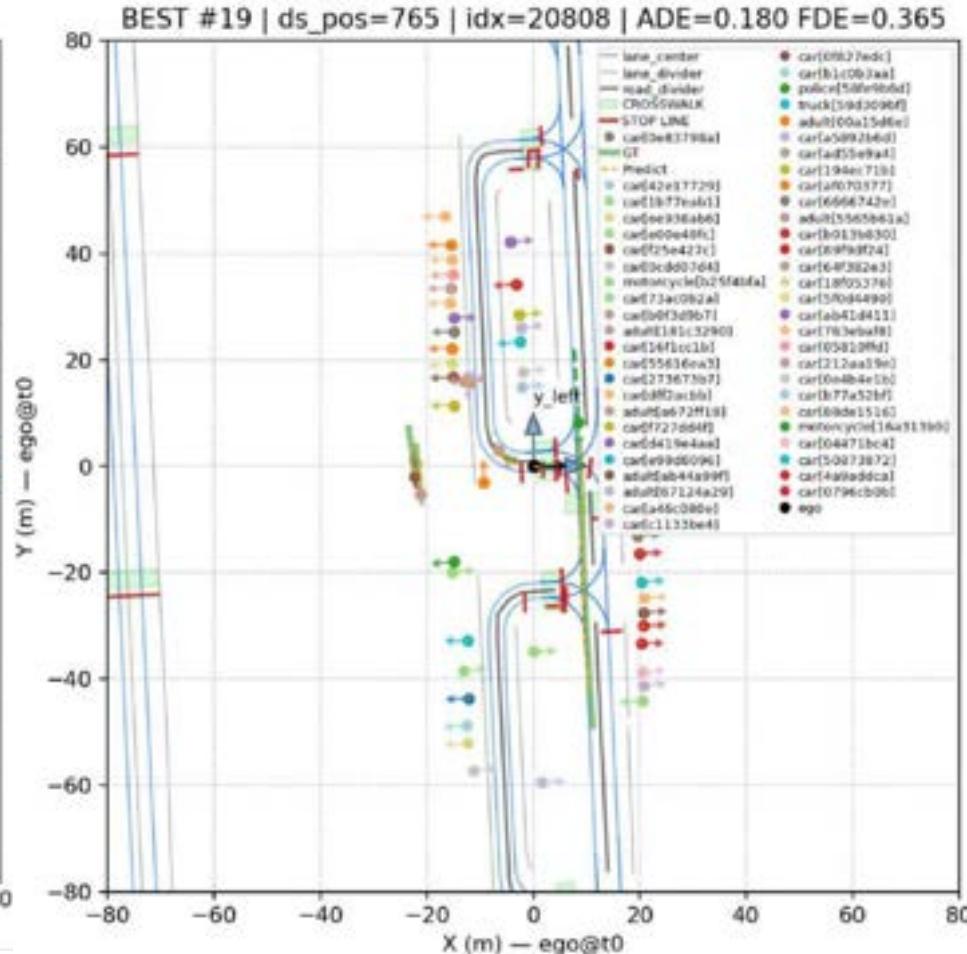
Results: Motion Prediction Quantitative Results

- Given past 2 seconds, the goal is to predict all agents' future trajectories in 5 seconds.
- We evaluate with standard minADE and minFDE metrics, averaged over all agents.
- Evaluated on nuScenes Dataset[1] and the leaderboard.

Method	minADE↓	minFDE↓
DGCN_ST_LANE [4]	1.092	3.624
CASPFormer [5]	1.148	6.702
THOMAS [2]	1.325	6.712
Ours	1.121	2.346

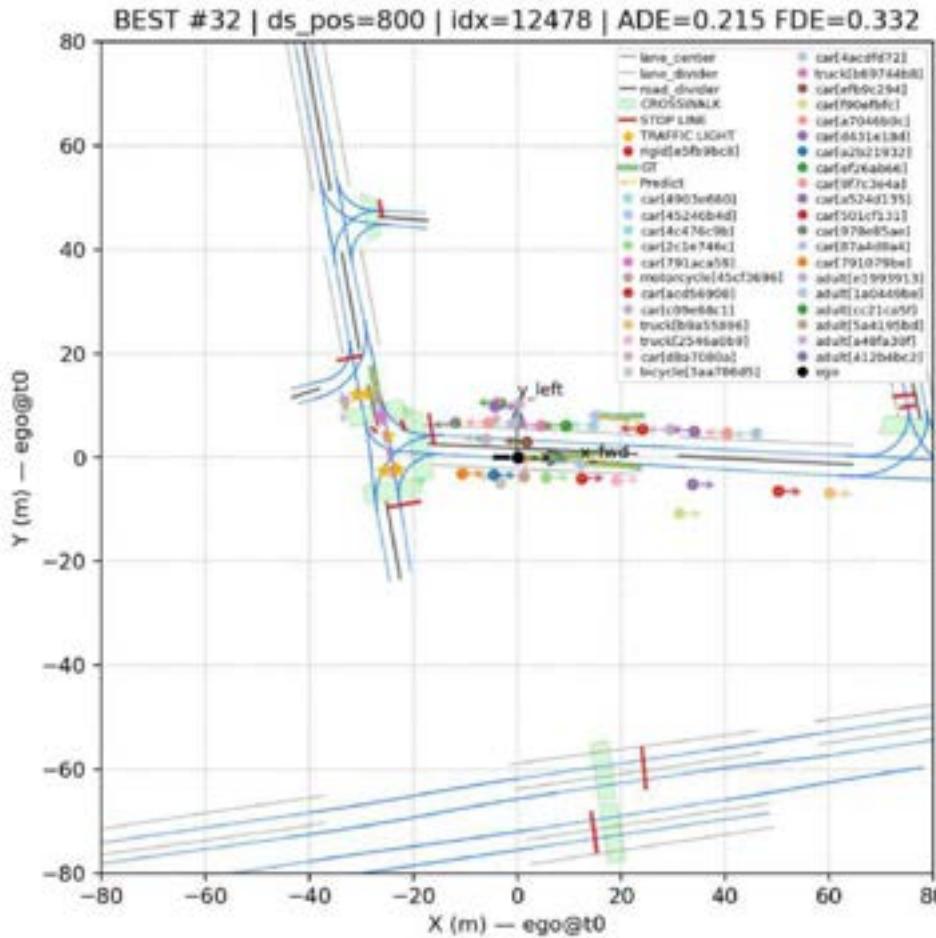
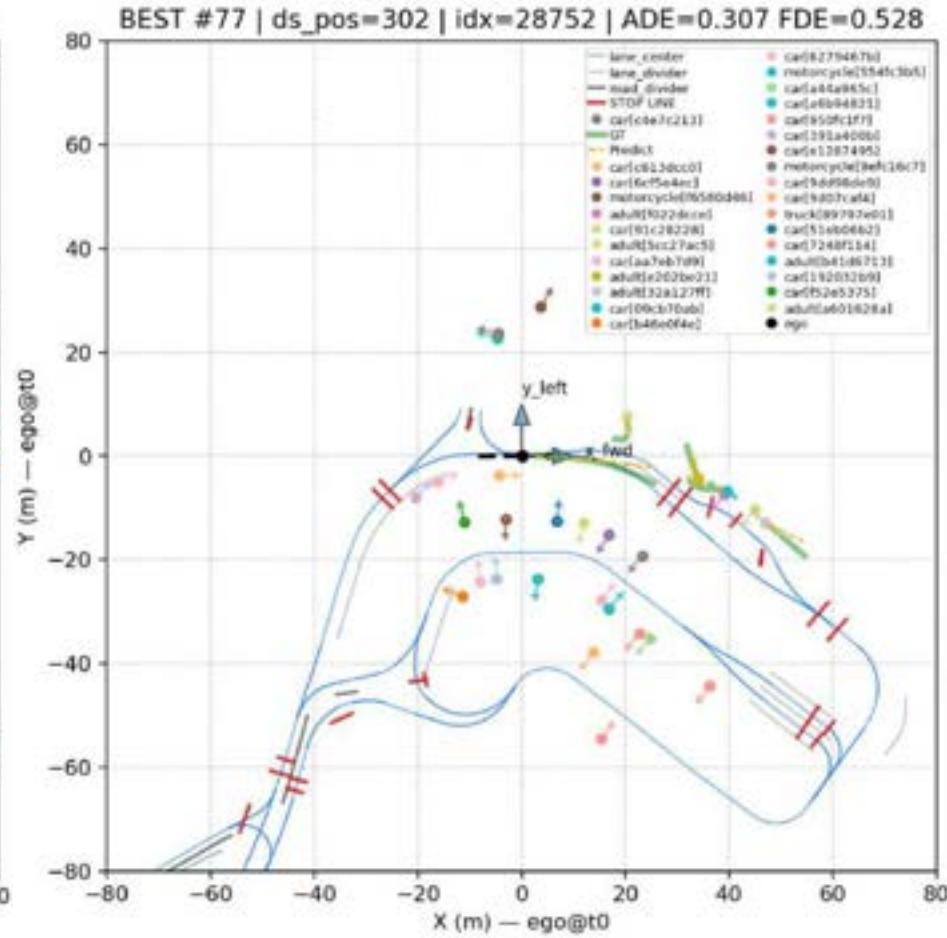
Results: Motion Prediction Qualitative Results (1/2)

- Visualization of the multi-agent motion prediction results.



Results: Motion Prediction Qualitative Results (2/2)

- Visualization of the multi-agent motion prediction results.



Outline

- Introduction & Motivation
- Related Work
- Proposed Method
- Results
- Conclusion & Summary

Conclusion & Summary

- Our current results rely on distillation from Qwen2.5-VL-7B-Instruct, which may limit accuracy. Distilling from Qwen2.5-VL-32B-Instruct could further improve performance.
- nuScenes is relatively simple: in many scenes, agents mostly drive straight with limited turning or complex interactions. As a result, our model may not be evaluated at its full capacity.
- Because JEPA self-supervised learning and traffic-rule distillation already enable the model to capture and predict scene dynamics, it is worth testing whether agent-history and relationship modalities can be removed without degrading performance.
- Since most motion prediction methods still depend on agent history, predicting all agents' future trajectories using only ego-camera inputs would be a valuable and impactful direction.

References (1/2)

- [1] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving. arXiv preprint arXiv:1903.11027, 2019.
- [2] Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulescu, and Fabien Moutarde. THOMAS: Trajectory heatmap output with learned multi-agent sampling. In International Conference on Learning Representations (ICLR), 2022.
- [3] Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang, Huizi Mao, Daniela Rus, and Song Han. Bevfusion: Multi-task multi-sensor fusion with unified bird's-eye view representation, 2024.
- [4] Kailu Wu, Xing Liu, Feiyu Bian, Yizhai Zhang, and Panfeng Huang. An integrating comprehensive trajectory prediction with risk potential field method for autonomous driving, 2024.
- [5] Harsh Yadav, Maximilian Schaefer, Kun Zhao, and Tobias Meisen. CASPFormer: Trajectory prediction from BEV images with deformable attention. In Pattern Recognition: 27th International Conference, ICPR 2024, Kolkata, India, Proceedings, Part XVII, volume 15317 of Lecture Notes in Computer Science. Springer, 2025.
- [6] Xiaoji Zheng, Lixiu Wu, Zhijie Yan, Yuanrong Tang, Hao Zhao, Chen Zhong, Bokui Chen, and Jiangtao Gong. Large language models powered context-aware motion prediction, 2024.
- [7] Gemma Roig, Jonathan L. McCormack, and others. AudioSet: An ontology and large-scale dataset for audio event recognition. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2017.

<https://doi.org/10.1109/ICASSP.2017.7952561>

References (2/2)

- [7] Xiaoji Zheng, Liwu Xu, Zhijie Yan, Yuanrong Tang, Hao Zhao, Chen Zhong, Bokui Chen, and Jiangtao Gong. Large language models powered context-aware motion prediction, 2024.
- [8] Zhai, Y., Zhou, H., Xu, X., Ma, Z., Liu, Z., & Qiao, Y. (2021). Self-Supervised Audio-Visual Learning Using Cross-Modal Contrastive Learning and Sound Source Localization. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 1559–1568.
- [9] Bardes, A., Garrido, Q., Ponce, J., Chen, X., Rabbat, M., LeCun, Y., ... & Ballas, N. (2024). Revisiting feature prediction for learning visual representations from video. arXiv preprint arXiv:2404.08471.
- [10] Chi, C., Feng, S., Du, Y., Xu, Z., Cousineau, E., Burchfiel, B., & Song, S. (2023). Diffusion Policy: Visuomotor Policy Learning via Action Diffusion. Int. J. Robotics Res., 44, 1684-1704.
- [11] Choi, Dooseop & Min, KyoungWook. (2022). Hierarchical Latent Structure for Multi-Modal Vehicle Trajectory Forecasting. 10.48550/arXiv.2207.04624.
- [12] Liao, B., Chen, S., Yin, H., Jiang, B., Wang, C., Yan, S., Zhang, X., Li, X., Zhang, Y., Zhang, Q., & Wang, X. (2024). DiffusionDrive: Truncated Diffusion Model for End-to-End Autonomous Driving. 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 12037-12047.

Appendix