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Past Present Future

What is Motion Prediction?

e (Goal: Given past trajectories, predict future motion of road agents.
e Typical setting:
e Past: Ns history (e.g. N=2, given 2s history)
e Future: Xs prediction horizon (e.g. X=6, predict future 6s)
e Each agent history is a sequence of (X, y) positions in bird-eye-view (BEV).
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Past Present Future

Multi-Agent Motion Prediction

e Real scenes have multiple interacting agents (cars, trucks, pedestrians)
e Multi-agent motion prediction: predict all agents’ future trajectories jointly
e Model must:

e (Capture inter-agent interactions (following, yielding, merging)
e Understand the scene context (lanes, intersections, barriers)

Self-driving Other vehicle
vehicle

[1]. https://medium.com/wovenplanetlevel5/how-to-build-a-motion-prediction-model-for-autonomous-vehicles-29f7f81f1580
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Motivation: Why Multi-Modal + Multi-Agent?

e Multi-modal perception is critical

Individual trajectory history of each agent is important.

Multi-agent interactions matter.
Camera gives rich semantics (lanes, traffic lights, signs, road markings).
LiDAR provides accurate geometry and distance, robust under lighting changes.

Knowledge to the scene context is another vital information.

® Our goal: learn a multi-modal model that jointly reasons about all agents’
future trajectories

[2]. https://www.rsipvision.com/adas-sensors-lidars/
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Related Work

e This project builds on the following related works:

12/12/2025

LLM-Augmented MTR [6] — Leverages GPT-4V with TC-Map BEV renderings and prompts to
inject traffic knowledge into motion forecasting.

DGCN_ST LANE [4] — Lane-based multi-agent trajectory prediction that uses a dynamic graph
convolutional network over lane graphs to model agent history and inter-agent interactions.
THOMAS [2] — ICLR 2022 multi-agent predictor that outputs future trajectories as heatmaps and
learns are combination module to sample scene-consistent, collision-free joint trajectories.
CASPFormer [5] — BEV-image transformer with deformable attention that performs multi-modal
motion prediction from rasterized BEV context, achieving state-of-the-art results on nuScenes.
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Past Present Future

Proposed Method (1/3)

e Input Data - all inputs are projected into a unified embedding space.

® Agent State History - past positions and headings

® Lane Centerlines - lane center positions from HD maps

® Traffic Light Signals - current state and spatial position

® Agent Interactions — relative position vectors to nearby agents
® Sensor Data — ego camera images and LiDAR point clouds

e Scene Encoder
® FEach modality above is encoded individually, and then fused via cross attention among modals to
produce a unified scene embedding capturing spatial context for all agents with shape (R, N, L, H).
Here, R refers to the number of rollouts, N refers to the number of agents, L is the length of the

sequence, and H is the hidden dimension.

/Scene Encoder
- N\ N

|
)

~w
Input Data Qe
{ p — \ Modal § = @)
B e &2 = Attention a2 | | o
QJ P 'd}il 'ﬁi ~d T \:}_5 Lo > e Encoder E :=‘D, - g Scéne
I Ol ( 9 ) s =
L Agentl y, g \ J E S ﬁ Embeddings
. N Y, IS
( = ) e 4 Y| — & ®RNLH
Bl & _ o= Gro? —_ | e Modal ~w = oo Lo 1
C| > - . < A e ”
¢ 00 s (9] = Attention ™| 3 = =
9 Agent2 Y, = Encoder gz (=]
—__ E s =
. & g

- NG =

G aI] negie

12/12/2025

7 Univer sity



Past

Present Future
Proposed Method (2/3)
- Moftion Predicion Result: (R, N, T, 2) ~
e Decoder ﬁ“"dw LR LA YT
® Dual Attention Fusion: Scene and /

traffic-rule embeddings are fused using
bi-directional cross-attention to ensure
both modalities are integrated into the

prediction process. Traffic-Rule-

®  Autoregressive Generation: ~ AWAr¢

.. Embeddings
The decoder generates predictions —_— =
autoregressively, attending to (R,N, L, D) =

previous tokens with self-attention
and integrating scene and traffic-rule

|

J

——
information through cross-attention.
® Training & Inference: v
During training, teacher forcing is used.
During inference, the model generates Dual
predictions step-by-step using its own . i
previous outputs. Attention

® Output: The decoder produces

motion predictions for agents over time,
with output shape (R,N,T,2):

—1

R: Number of rollouts (distinct predictions),

N: Number of agents, Scene z

T: Number of time steps, Embeddings -

2: Predicted x and y coordinates for (R, N, L, H) ]

each agent.
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Proposed Method (3/3)

e Overall Model Architecture
[ Input Data

Agent State History - past positions and headings Thevader SC SR e R L \
® Lane Centerlines - lane center positions from HD maps £ iy
. . . .- ¥, = £ & Te
® Traffic Light Signals - current state and spatial position T L ¥ ™
® Agent Interactions — relative position vectors to nearby agents ( T : ] =
® Sensor Data — ego camera images and LiDAR point clouds ot i H Cman Nithtinm | - m
® Scene Encoder e .
® FEach modality is encoded individually, and then fused via [ Sell Anientien ]- [ Self Aricntiea ] w4 Self Attt
cross attention to a unified embedding. "'u_ . L] . 57
® Decoder Aswierigresive Bocoder Layer N - ™

® Autoregressive Generation: The decoder generates
predictions autoregressively, attending to previous tokens
with self-attention and integrating scene information through
cross-attention. r
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Past Present Future

What We Have Done So Far (1/5)

e Baseline 1: Uni-Modal (History only)
® Use each agent’s trajectory history
® Use GRU network to encode each agent’s trajectory history
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Past Present Future

What We Have Done So Far (2/5)

e Baseline 2: History + Multi-Agent Relationships
® Use each agent’s geometry relationship: [Ax, Ay, Ayaw, Avy, Av,,, Aay, Aa,, ]
® Use attention to encode each agent’s relationship embedding

12/12/2025 (g Mellon
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Past Present Future

What We Have Done So Far (3/5)

e Baseline 3: History + Multi-Agent Relationship + BEV Fusion
® Use ego car’s camera image + LiDAR sensors

® Use BEV Fusion framework
® Extract each agent’s BEV feature through back projection and sampling and then fuse

together with previous embeddings.

Camera Fear,

(in BEV)
> > & > N
}‘ Agent’s BEV position
Camera Camera Camera-to-BEV T *
Encoder Feamres View Transform T )
> = - = | Sampling
| | L h)
’ BEVY Fused BEY h
P — —— Euncader Features . .
_— ; _f-'“' = | 2 Baseline2 embedding
+ | ] = a1 > e
| __*
LiDAR LiDAR Flatten LiDAR Fear.
Encoder Featuires (along =-axis) (in BEV)

LiDAR Point Clond

[3]. Z. Liu et al., “BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird’s-Eye View Representation”, NeurIPS 2022.
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What We Have Done So Far (4/5)

e Dataset Generation: nuScenes
® Sweep the whole nuScenes dataset with past 2s and future 6s context window
® Define BEV region to be x: [-80m, 80m], y: [-80m, 80m]
® Generating 12,782 samples. (8-1-1 for train-val-test)
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What We Have Done So Far (5/5)

e (Quantitative Results

valfmacro_ADE walfmacra_FOE

vallloin

nuScenes Leaderboard

DGCN_ST_LANE (Agent History + Agent Relationship) 1.092 3.624
DSS 1.192 6.640
CASPFormer (Agent History + Agent Relationship + Image) 1.148 6.702
Ours Method

Baselinel: Uni-model (Agent History) 2.221 4.121
Baseline2: Agent History + Agent Relationship 1.733 3.388

Baseline3: Agent History + Agent Relationship + BEV 1.365 2.763
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Past Present Future

What We Did Next

e Upgrade the encoder:
e Make the model learn the world dynamics.
e Make the model learn the traffic rules.
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Past Present Future

What We Did Next

e Upgrade the encoder:

e Make the model learn the world dynamics.
°
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Past Present Future

JEPA SSL Pretraining

Architecture for the world model: JEPA ‘ -
» JEPA: Joint Embedding rrre g Frppg
Predictive Architecture (‘m-:;-l Prodictor
» x: observed past and presemt mb SOea “
» vy luture
P A achor
» z: latent vanable (unknown) A
» D{ ) prediction cost
» C( ) surrogate cost
P JEPA predicts a representation -
ol the future 5 from a '0(060' W Lows
repeesentabon of the past and Mop-grad
present Sy
Image Credis: Yano taCun's Barvacd presentasiso Odarch 28, 2024) e A R e e e e e
Encoder Predictor
Tl
=l Fo=e r\ A ’ A
- ol @ B
EMA
Encoder
3 .
F-r-a' *1 :—-4) sq—o
3 Loss
Stop-grad

[4]. https://ai.meta.com/research/publications/revisiting-feature-prediction-for-learning-visual-representations-from-video/

[5]. https://ai.meta.com/blog/v-jepa-2-world-model-benchmarks/
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JEPA SSL Pretraining — Stage1 Spatial Pretraining
//_ I : Learnable Masked Token \\

-~

Back Projection

MaskMosition

(S « BEV
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JEPA SSL Pretraining — Stage2 Temporal Pretraining
Pos )

(’F T Pose

e @T

2T il @T+AT
Camena BEV
@1 Context il i i =
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@t Encoder
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Fine-Tuning Stage
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Fine-Tuning Stage

e JEPA [9] shows good visual recognition results on various downstream tasks.

Video Tasks I'mage Tasks
K400 S58v2 AVA IN1K  Places205  iNat2]

Method Arch. Params. Data (6axs=3  (16x2x3)
Methods pretrained on Images
I-JEPA ViT-H/165 1o 630M INZ2K 79.7 50.0 198 844 66.5 85.7
OpenCLIP VIT-G/14 1800M LAION BLE 34.8 232 B5.3 T0.2 B3.6
DINOvZ WiT-g/14 1 100M LVD-142M B3.4 50.6 24.3 HG6.2 684 8.8
Methods pretrained on Videos
MVD VIT-L/16 200M [N 1K +EA40) 79.4 66.5 19.7 733 594 65.7
OmniMAE VIT-H/16 630M INTK+88v2 71.4 65.4 16.0 763 60.6 724
VideoMAE ViT-H/16 630M K400 79.8 66.2 209 723 59.1 65.3
VideoMAEVZ  ViT-g/l4 1 100M Un_Hybrid 71.2 612 129 714 606 68.3
Hiera Hiera-H 670M K400 77.0 64.7 17.5 1.4 595 61.7

ViT-L/16 200M BO.8 69.5 25.6 748 60.3 67.8
V-JEPA ViT-H/16 630M VideoMix2M B2.0 714 25.8 739 61.7 67.9

VIT-H/1635, 630M B9 T2.2 25.0 TT.4 G2.8 T2.6
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What We Did Next

e Upgrade the encoder:
[

e Make the model learn the traffic rules.
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Past Present Future

VLM Knowledge Distillation (1/4)

® We rendered BEV map from input data and craft prompt together and sent to Qwen2.5VL model
to extract traffic rule embedding, and treat it as a teacher to distill the information through
supervised training a student model. During inference, we directly use the rendered BEV map and
the frozen student model to output the calculated traffic rule embedding.

ﬂajﬁc—Rule-Aware Encoder \
ﬂacher VLM \ @owledge Distillation \

P t
=N Student Model

g& GT-IASR |IASR
Rule
BCELoss & I I I I %j% A [ Embeddings

|

R,N,L, D)

uonezusey dejy
1X9)u0)) uoneprodsueI],

Qwen2.5VL

(

AN /

xtract Traffic Rule Cases and Rendering to BEV Map

12/12/2025
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VLM Knowledge Distillation (2/4)

e Proposed IAS Embedding:
{intention_type, affordance type, scenario type} € R?’

12/12/2025

intention_type = {

0:
: "PREPARE_OR_DO_LEFT_TURN",

: "PREPARE_OR_DO_RIGHT_TURN",

: "STOP_FOR_TRAFFIC_CONTROL",

: "STOP_FOR_PEDESTRIAN_OR_OBJECT",
:"PULL_OVER_OR_PARK_LEGAL",

: "STATIONARY_IN_LANE_ABNORMAL",
:"U_TURN_OR_LANE_CHANGE"

NooubhwNER

"KEEP_LANE_OR_GO_STRAIGHT",

# U-turn

affordance_type = {

0:
:"CAN_TURN_LEFT",
:"CAN_TURN_RIGHT",

: "FRONT_BLOCKED BY_OBSTACLE",
: "FRONT_BLOCKED BY_RULE",

: "MUST_STOP_AT _STOP_LINE",
:"MUST_YIELD_TO_PEDESTRIAN",
:"MUST_YIELD_TO_ONCOMING",

: "LANE_CHANGE_ALLOWED",

: "ROADSIDE_STOP_ALLOWED"

OCoo~NOYTUD WNERE

"CAN_GO_STRAIGHT",

7 University

scenario_type = {
0: "STRAIGHT _FREE_FLOW_ROAD",
: "INTERSECTION_SIGNALIZED",
: "INTERSECTION_STOP_OR_YIELD",
: "PEDESTRIAN_CROSSING_ZONE",
: "MERGE_OR_ONRAMP_OR_RAMP",
: "PARKING_OR_DRIVEWAY_AREA",
: "ROADSIDE_OR_SHOULDER",
: "COMPLEX_MULTI_AGENT_NEGOTIATION",
: "UNSURE"

O NO UL A WN K
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VLM Knowledge Distillation (3/4)

® Proposed Traffic Rules Embedding:
{traffic rules} € R®

TRAFFIC_RULES = {
0: "RULE_STOP_LINE_AHEAD",
# A visible STOP LINE lies ahead along the current lane direction.
1: "RULE_MUST_STOP_BEFORE_STOP_LINE",
# The agent is approaching an intersection with a STOP LINE and
# should come to a complete stop before crossing that line.
2: "RULE_TRAFFIC_LIGHT_AHEAD",
# A TRAFFIC LIGHT icon is located ahead at the intersection that
# controls this approach (state unknown; we only know it exists).
3: "RULE_CROSSWALK_AHEAD",
# A CROSSWALK (green shaded area) lies ahead on the agent’s lane.
4: "RULE_AGENT_ON_OR_BLOCKING_CROSSWALK",
# Some traffic agent (colored dot) is currently inside, entering,
# or stopped on the CROSSWALK area.
5: "RULE_INTERSECTION_CONFLICT_ZONE_AHEAD",
# The agent’s lane is entering an intersection region where lane
# centers from other directions cross, creating potential conflicts.
6: "RULE_TURN_MUST_YIELD_TO_THRU_TRAFFIC",
# The agent is making a turning movement across another stream
# of traffic that continues straight; the straight-moving traffic
# has priority.
7: "RULE_THRU_LANE_HAS_PRIORITY",
# The agent is on a main through lane (straight lane center passing
# through the junction), and crossing/merging side approaches should yield.
8: "RULE_NO_STOPPING_IN_THRU_LANE",
# The agent is currently in the middle of a through lane, away from
# STOP LINE / CROSSWALK / intersection entries; stopping here is not allowed.

Carnegie
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VLM Knowledge Distillation (4/4)

® The prompts are crafted with an auto-generated scene caption, predefined label categories, traffic
rules, and a strict response format [7]. Few-shot examples are included to guide consistent
outputs.

® Definition of output traffic-rule-aware embedding:

@ Intentions (I): Agent’s intended motion (e.g., STRAIGHT, LEFT-TURN, STOP) encoded as a weighted one-hot vector R®.
@ Affordances (A): Legality/feasibility of actions (e.g., LEFT-ALLOW, STOP-FORCE) encoded as a binary vector R1°.
@® Scenario Types (S): High-level context (e.g., INTERSECTION, MERGING) encoded as a binary vector R®.
@® Rules(R): Traffic rules to drive IAS decisions (e.g., STOP-LINE-AHEAD, NO-STOPPING), encoded as a binary vector R®.
i , I,I.--”j-d_'l'-eml Prommpl Examiple _H“‘t..
o o 2 Captions s .'11‘:_3”5;..?13':. .
r? g, ool
‘} h : L] |r\l'.rl‘|"l'|f"'!-l' (] *.'.F.-Tl.'l:-ll'll' lllr.r-.—'l:'-u“
A N ey
/‘ﬁ/ .l- F sl ol Je dgn e Cnimast
'i'.' : ® D cmmple Follrs @ il r = TH
LY __-'"'-. " y | Fﬂ‘m L] HH1::|.'L :I: Hrnu Pflmd!ldn:l-'T
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% M M — *-\_ /
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Put It Together: The Whole Proposed Model

/ Model Architecture . | | \\l\
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Past Present Future

Results: Knowledge Distillation

Ad:
1=[0.9,0.1, 0,0, 0, 0, 0, 0] = GO STRAIGHT
A=[1,0,0,0,0,0,0,0,0, 0] = CAN GO STRAIGHT
S=[1,0,0,0,0,0,0,0,0] = STRAIGHT ROAD

i “| R=[0,0,0,0,0,0,0,1,1] = THRU LANE PRIORITY,

F S AD: NO STOP THRU LANE

I=[0.9,0.1,0,0,0,0,0, 0] = GO STRAIGHT
A=[1,0,0,0,0,0,0,0,0,0] = CAN GO STRAIGHT
5=(1,0,0,0,0,0,0,0,0] = STRAIGHT ROAD
|1 R=[0,0,0,0,0,0,0,1, 1] = THRU LANE PRIORITY,
NGO STOP THRU LANE
Knowledge Distillation Result from Qwen2.5VL-32B-Instruct
=se =) Ad:
I=[0,0,0,0,0,0,0,1.0] = U-TURN OR LANE CHANGE
A=[1,0,0,0,0,0,0,0,0,0] - CAN GO STRAIGHT
$=[0,0,0,0,0,0,0,0, 0] = NO QUTPUT
o : - EEIL 0,0,0,0,0,0,0,0] - RULE STOP LINE AHEAD

I=[0,0,0,0,0,0,0, 1.0] - U-TURN OR LANE CHANGE

A=[1,0,0,0,0,0,0,0,0,0] = CAN GO STRAIGHT

$=[0,0,0,0,0,0,0,0, 0] = NOOUTPUT

R=[1,0,0,0,0,0,0,0,0] = RULE STOP LINE AHEAD
Knowledge Distillation Result from Qwen2.5VL-7B-Instruct
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Results: Motion Prediction

® Metrics
® We evaluate with three standard metrics: minADE, minFDE, and MR, averaged over all agents. Let
pE = (xF¥, y¥) be the predicted position at time t for rollout k, and p; the ground-truth.

+ mMInADE: Best average L2 distance over T steps across k rollouts:
(_il
1
. k *
min — — 9
ates ?_1:”1% oMl|

¢+ minFDE: Best final-step L2 distance across k rollouts:

min|[p7 — pil>
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Results: Motion Prediction Quantitative Results

e Given past 2 seconds, the goal is to predict all agents’ future trajectories in 5 seconds.
e We evaluate with standard minADE and minFDE metrices, averaged over all agents.
e Evaluated on nuScenes Dataset[1] and the leaderboard.

Method minADEJ | minFDE] |
DGCN_ST_LANE [4]| 1.092 3.624
CASPFormer [5] 1.148 6.702
THOMAS [2] 1.325 6.712
Ours 1.2l 2346 |
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Results: Motion Prediction Qualitative Results (1/2)

® Visualization of the multi-agent motion prediction results.

BEST #6 | ds_pos=298 | ldx=16168 | ADE=0.134 FDE=0.265 o BEST #19 | ds_pos=765 | idx=20808 | ADE=0.180 FDE=0,365
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Results: Motion Prediction Qualitative Results (2/2)

® Visualization of the multi-agent motion prediction results.

BEST #32 | ds_pos=800 | idx=12478 | ADE=0.215 FDE=0.332 < BEST #77 | ds_pos=302 | idx=28752 | ADE~0.307 FDE=0.528
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Conclusion & Summary

® Our current results rely on distillation from Qwen2.5-VL-7B-Instruct, which may limit
accuracy. Distilling from Qwen2.5-VL-32B-Instruct could further improve
performance.

® nuScenes is relatively simple: in many scenes, agents mostly drive straight with limited
turning or complex interactions. As a result, our model may not be evaluated at its full
capacity.

e Because JEPA self-supervised learning and traffic-rule distillation already enable the
model to capture and predict scene dynamics, it is worth testing whether agent-history
and relationship modalities can be removed without degrading performance.

e Since most motion prediction methods still depend on agent history, predicting all
agents’ future trajectories using only ego-camera inputs would be a valuable and
impactful direction.
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