### Embedded Pedestrian Tracking and Detection MSCV19 Capstone Project, Internal(CMU)

Team Member: Yongxin Wang, Chunhui Liu Advisor: Professor Kris Kitani

12/06/2019

# Introduction

- Problem
  - Multi-target Pedestrian Tracking
- Challenge
  - Accurate detection and association at the same time
- Our take
  - One stage network
  - Graph Neural Network (GNN) for simultaneous detection and association
  - Non-Maximum Suppression specifically tailored for the tracking task



### Simultaneous Detection and Tracking with Graph Neural Network

# Brief Introduction to GNN

[1] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, Max Welling, "Modeling Relational Data with Graph Convolutional Networks", ESWC 2018 (Best Student Research Paper)

- Aggregate node features based on local neighborhood
  - Features can be used for downstream tasks, i.e. node classification [1]
  - Details about how GNN works can be found in Appendix II



<u>An online social network represented by a graph.</u> Each node denotes a feature of an entity within the social network. Each edge denotes the relationship features between entities.

## Intuition

- Association can be naturally formulated as a bipartite graph matching
- GNN clusters similar nodes closer together than dissimilar ones
  - Same identities can be clustered closer together across two frames.
- We took a step further
  - GNN for both association and detection



 Data association in MOT formulated as graph

 association
 A Node denotes features of a detection

 (if in
 Frommegn-anchor box (if in

 ). Afreedge edge notes relationship features between

 detections and anchor boxes.

### Past: Initial Idea



## Present: Our Implementation (YOLOv3 + GCN)



7

- Validation Performance on MOT15 Benchmark
  - Considering all ground truth pedestrians
  - $\circ$  0.2 below the SOTA

| ΜΟΤΑ 1 | IDF1 1                                                 | МТ ↑                                                                                                                                  | ML ↓                                                                                             | FP ↓                                                                                                                                                                                                                                                                                                                                                                                                    | FN ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ID Sw.↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 56.8   | 59.4                                                   | 43.30%                                                                                                                                | 21.20%                                                                                           | 6,452                                                                                                                                                                                                                                                                                                                                                                                                   | 19,642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 56.6   | 50.7                                                   | 52.13%                                                                                                                                | 18.26%                                                                                           | 6,520                                                                                                                                                                                                                                                                                                                                                                                                   | 7,756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 56.6   | 57                                                     | 39.90%                                                                                                                                | 23.90%                                                                                           | 7,198                                                                                                                                                                                                                                                                                                                                                                                                   | 18,926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 56.5   | 61.3                                                   | 45.10%                                                                                                                                | 14.60%                                                                                           | 9,386                                                                                                                                                                                                                                                                                                                                                                                                   | 16,921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 55.7   | 61                                                     | 40.60%                                                                                                                                | 25.80%                                                                                           | 6,273                                                                                                                                                                                                                                                                                                                                                                                                   | 20,611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 55.5   | 59.1                                                   | 39.00%                                                                                                                                | 25.80%                                                                                           | 5,594                                                                                                                                                                                                                                                                                                                                                                                                   | 21,322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | MOTA 1<br>56.8<br>56.6<br>56.6<br>56.5<br>55.7<br>55.5 | MOTA ↑         IDF1 ↑           56.8         59.4           56.6         50.7           56.5         61.3           55.5         59.1 | MOTA ↑IDF1 ↑MT ↑56.859.443.30%56.650.752.13%56.65739.90%56.561.345.10%55.76140.60%55.559.139.00% | MOTA ↑         IDF1 ↑         MT ↑         ML ↓           56.8         59.4         43.30%         21.20%           56.6         50.7         52.13%         18.26%           56.6         57         39.90%         23.90%           56.5         61.3         45.10%         14.60%           55.7         61         40.60%         25.80%           55.5         59.1         39.00%         25.80% | MOTA ↑         IDF1 ↑         MT ↑         ML ↓         FP ↓           56.8         59.4         43.30%         21.20%         6,452           56.6         50.7         52.13%         18.26%         6,520           56.6         57         39.90%         23.90%         7,198           56.5         61.3         45.10%         14.60%         9,386           55.7         61         40.60%         25.80%         6,273           55.5         59.1         39.00%         25.80%         5,594 | MOTA ↑         IDF1 ↑         MT ↑         ML ↓         FP ↓         FN ↓           56.8         59.4         43.30%         21.20%         6,452         19,642           56.6         50.7         52.13%         18.26%         6,520         7,756           56.6         57         39.90%         23.90%         7,198         18,926           56.5         61.3         45.10%         14.60%         9,386         16,921           55.7         61         40.60%         25.80%         6,273         20,611           55.5         59.1         39.00%         25.80%         5,594         21,322 |

[1] A Real-time Deep Graph Matching for Multi-object Tracking. In Tech Report, Tencent, 2018.

[2] W. Lin, J. Peng, S. Deng, M. Liu, X. Jia, H. Xtong. Real-time multi-object tracking with hyper-plane matching (v1). In Tech Report, Shanghai Jiao Tong University & ZTE Corp, 2017.

[3] K. Fang, Y. Xiang, X. Li, S. Savarese. Recurrent Autoregressive Networks for Online Multi-Object Tracking. In The IEEE Winter Conference on Applications of Computer Vision (WACV), 2018.

8

[4] S. Manen, M. Gygli, D. Dai, L. Van Gool. PathTrack: Fast Trajectory Annotation with Path Supervision. In ArXiv e-prints, 2017.

[5] W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.

- Validation performance on MOT17 Benchmark
  - Still some space for improvement
  - The major drop in performance lies in the small objects

| Tracker    | ΜΟΤΑ 1 | IDF1 1 | МТ ↑   | ML ↓   | FP ↓   | FN ↓    | ID Sw.↓ |
|------------|--------|--------|--------|--------|--------|---------|---------|
| PT17       | 66.9   | 66.6   | 36.80% | 21.30% | 32,502 | 150,750 | 3,567   |
| MTGCN      | 63.9   | 55.4   | 33.40% | 19.60% | 30,423 | 169,755 | 3,747   |
| SST        | 52.4   | 49.5   | 21.40% | 30.70% | 25,423 | 234,592 | 8,431   |
| Deep_Track | 52.3   | 47.3   | 19.70% | 36.10% | 16,981 | 246,393 | 5,573   |
| YOSEMITE   | 50.9   | 56     | 18.90% | 33.80% | 25,295 | 249,365 | 2,397   |
| Ours       | 48.7   | 36.5   | 22.39% | 30.60% | 2,361  | 17,050  | 176     |
| AEb_Exp_6  | 48.1   | 45.9   | 18.10% | 39.50% | 17,371 | 273,117 | 2,352   |
| AEb_Exp_4  | 38.6   | 39.3   | 14.80% | 46.40% | 16,841 | 327,217 | 2,206   |

#### • Importance of GCN

| Backbone  | Model        | Test set | Matching                                 | MOTA 1 | мотр 1 | IDF1 1 | ID Sw.↓ | MT Î   | ML ↓   | FP ↓ | FN ↓  |
|-----------|--------------|----------|------------------------------------------|--------|--------|--------|---------|--------|--------|------|-------|
| DarkNet53 | YoloV3 + GCN | MOT15    | Adjacency<br>matrix <b>before</b><br>GCN | 15     | 79.3   | 17.3   | 16      | 5.03%  | 70.85% | 397  | 12476 |
| DarkNet53 | YoloV3 + GCN | MOT15    | Adjacency<br>matrix <b>after</b><br>GCN  | 33.4   | 79.6   | 29.9   | 228     | 17.59% | 36.68% | 1464 | 8468  |

• Importance of other components

• Loss reweighting + Motion module

| Backbone  | Model                                  | Dataset | ΜΟΤΑ ↑ | MOTP 1 | IDF1 1 | ID Sw.↓ | MT 1   | ML ↓   | FP ↓ | FN ↓  |
|-----------|----------------------------------------|---------|--------|--------|--------|---------|--------|--------|------|-------|
| DarkNet53 | YoloV3 + GCN                           | MOT17   | 19.6   | 82.4   | 18.2   | 354     | 1.87%  | 64.18% | 692  | 30513 |
| DarkNet53 | YoloV3 + GCN<br>+ ReWeight             | MOT17   | 22.3   | 81.9   | 18.6   | 428     | 2.99%  | 59.33% | 762  | 29283 |
| DarkNet53 | YoloV3 + GCN<br>+ Motion               | MOT17   | 38.1   | 82.4   | 29.6   | 573     | 13.43% | 47.39% | 1561 | 22139 |
| DarkNet53 | YoloV3 + GCN<br>+ Motion +<br>ReWeight | MOT17   | 48.7   | 82     | 36.5   | 176     | 22.39% | 30.60% | 2361 | 17050 |



### Future: Improvements and directions

- Data augmentation to compensate small objects
- Consider a temporal GNN that takes in multiple frames ( >2 )
- Preparing Arxiv paper

# Tracking NMS

Non-Maximum Suppression algorithm designed for tracking task, instead of detection task.

### Motivation

### **Baseline and Proposed Methods**

Experiments

## Motivation

Tracking task and Detection task hold different assumptions.

- For detection, we assume that bounding boxes are not overlapped with each other.
- For tracking, two person can be overlapped with each other.
- For tracking, we also have previous tracking results as the prior knowledge.

Tracking-NMS: Refind some good candidates and make exceptions.



NMS (0.5+0.5)



#### All Candidates

# Baseline Pipeline: JDE Tracker<sup>[1]</sup>



 compute IOU distance between unmatched detections and unmatched tracking
 match using Hungarian method

[1] Wang, Zhongdao, et al. "Towards Real-Time Multi-Object Tracking." arXiv preprint arXiv:1909.12605 (2019).

# Proposed Pipeline with Tracking NMS



# Tracking NMS: Version 1





NMS Kept Detections

Tracking NMS Exceptions



7

Tracking NMS Elimination

# Tracking NMS: Version 1



matching for tracking[a]



Tracking NMS Exceptions



7

Tracking NMS Elimination

# Tracking NMS: Final Version



- NMS Kept Detections 5
  - Tracking NMS Exceptions
- **Previous Tracking Box** а

7

Tracking NMS Elimination

# Experiments 1/3: Ablation Study

| Methods                               | МОТА ↑  | IDF1 ↑  | IDP ↑   | IDR ↑   | Box<br>Recall ↑ | Box<br>Precision ↑ | FP↓  | FN↓   | ID<br>Switches↓ | Fragmentations<br>↓ |
|---------------------------------------|---------|---------|---------|---------|-----------------|--------------------|------|-------|-----------------|---------------------|
| JDE Tracker<br>Official Code          | 74.33%  | 67.00%  | 72.73%  | 62.04%  | 80.39%          | 94.25%             | 5504 | 22016 | 1303            | 2385                |
| Tracking NMS w/o<br>Motion Model      | 74.950% | 66.641% | 71.948% | 62.063% | 81.249%         | 94.189%            | 5629 | 21057 | 1445            | 2600                |
| Tracking NMS Version 1                | 74.945% | 66.648% | 71.906% | 62.107% | 81.289%         | 94.114%            | 5709 | 21012 | 1415            | 2586                |
| Tracking NMS with<br>Multi Candidates | 74.655% | 66.608% | 71.075% | 62.670% | 82.077%         | 93.086%            | 6846 | 20127 | 1489            | 2295                |
| Tracking NMS Final                    | 75.166% | 66.736% | 71.371% | 62.666% | 82.126%         | 93.535%            | 6375 | 20072 | 1441            | 2294                |

MOTA: Multiple Object Tracking Accuracy. This measure combines three error sources: false positives, missed targets and identity switches.

### Experiments 2/3: Curves



## Experiments 3/3: Final Comparison

| Methods                      | Dataset        |        | IDE1 ↑ |        |        | Box      | Box         | ED   | FN↓   | ID        | Fragmentati |
|------------------------------|----------------|--------|--------|--------|--------|----------|-------------|------|-------|-----------|-------------|
|                              | Dataset        | MOTA   |        |        |        | Recall ↑ | Precision ↑ |      |       | Switches↓ | ons↓        |
| JDE Tracker<br>Official Code | MOT15<br>Train | 67.98% | 76.75% | 73.84% | 79.90% | 88.56%   | 81.84%      | 1548 | 901   | 73        | 160         |
| Tracking NMS Final           | MOT15<br>Train | 72.64% | 79.35% | 78.35% | 80.37% | 88.12%   | 85.90%      | 1139 | 936   | 80        | 160         |
| JDE Tracker<br>Official Code | MOT17<br>Train | 74.33% | 67.00% | 72.73% | 62.04% | 80.39%   | 94.25%      | 5504 | 22016 | 1303      | 2385        |
| Tracking NMS Final           | MOT17<br>Train | 75.17% | 66.74% | 71.37% | 62.67% | 82.13%   | 93.53%      | 6375 | 20072 | 1441      | 2294        |

# More Examples

Baseline



Tracking NMS

Thank you Q&A