Adversarial Learning for Diabetic Retinopathy

Team Member: Qiqi Xiao Sponsor: CMU Internal Project Advisors: Kris Kitani, Min Xu Date: 12/04/2018

Outline

- Motivation for Diabetic Retinopathy Problem
- Diabetic Retinopathy Lesion Detection
 - Problem Definition
 - Detection Methods
 - Detection Performance
- Diabetic Retinopathy Lesion Segmentation
 - Problem Definition
 - Segmentation Framework
 - Conditional GAN Based.
 - Generator: HedNet
 - Segmentation Performance
- Conclusion

Motivation: Diabetic Retinopathy

Diabetic Eye

• What:

- Diabetes complication
- Caused by damage to the blood vessels
- Cause of preventable blindness.
- Why:
 - Early detect diseases
 - \circ $\,$ Hard, time consuming $\,$
 - Make it automatic.

Diabetic Retinopathy Lesions

Outline

- Motivation for Diabetic Retinopathy Problem
- Diabetic Retinopathy Lesion Detection
 - Problem Definition
 - Detection Methods
 - Detection Performance
- Diabetic Retinopathy Lesion Segmentation
 - Problem Definition
 - Segmentation Framework
 - Conditional GAN Based.
 - Generator: HedNet
 - Segmentation Performance
- Conclusion

Definition: Diabetic Retinopathy Lesion Detection

• Training:

 train the model given several retinal images, with labels of microaneurysms.

• Testing:

 detect the locations of microaneurysms on new images. Example *microaneurysms* in 200×200 patches with bounding box labels(noted in green)

Detection Framework

Methods: inclusion of negative samples

Inclusion of negative samples

- positive samples: patches containing at least one microaneurysm;
- *negative samples:* patches without microaneurysms;

Faster RCNN, can only train on positive samples

Modified Faster RCNN, allow training on negative samples

Comparison with other image-level work

- Both with VGG16;
- Our method can simply transform the bounding box results into image scores(by summing up all the bounding-box scores, and then normalize all the scores to [0, 1]);
- Our method does not directly train for image-level classification.

Detection result examples(correct)

True Positive Examples (detected bounding boxes noted in **blue** and ground truth noted in green, the bottom part means the detected patch, the top part in grey is a zoomed region corresponding to the grey box in the bottom. There is a microaneurysm in the grey box marked in dotted circle.

Detection result examples(incorrect)

False Positive Examples

False Negative Examples

Outline

- Motivation for Diabetic Retinopathy Problem
- Diabetic Retinopathy Lesion Detection
 - Problem Definition
 - Detection Methods
 - Detection Performance

• Diabetic Retinopathy Lesion Segmentation

- Problem Definition
- Segmentation Framework
 - Conditional GAN Based.
 - Generator: HedNet
- Segmentation Performance
- Conclusion

Definition: DR Lesion Semantic Segmentation

DR Lesion Segmentation Dataset

Indian Diabetic Retinopathy Image Dataset (IDRiD)

	TRAINING SET	TESTING SET		
microaneurysms (MA)	54	27		
soft exudates (SE)	26	14		
hard exudates (EX)	54	27		
hemorrhages (HE)	53	27		

Segmentation Framework

Generator: HedNet Based

- Advantages:
 - Different Scales.
 - Converge quickly.
- Loss function: Pixel-wise binary cross-entropy loss
- Loss weights: Positive:Negative = 10:1
- Xie, Saining, and Zhuowen Tu. "Holistically-nested edge detection." Proceedings of the IEEE international conference on computer vision. 2015.

Quantitative Results(Average Precision)

Our Results

	MA	HE	SE	EX
Hednet	0.4270	0.4302	0.5215	0.7935
Our method ($\lambda = 0.01$)	0.4468	0.4330	0.5158	0.8183

LeaderBoard Results

Team Name	MA Score F	RANK	HE	RANK	Score	RANK	EX	RANK
VBT	0 4951	2	0.6804	1	0 6995	1	0 7127	11
	0.4351	2	0.0004		0.0333	1 1	0.7127	
PAlech	0.474	3	0.649	2	-		0.885	1
IFLYTEK-MIG	0.5017	1	0.5588	3	0.6588	3	0.8741	2
SOONER	0.4003	5	0.5395	4	0.5369	7	0.739	10
SAIHST	:-::		-		-		0.8582	3
Izvuncc fusion	-		-		0.6259	4	0.8202	4
, _								
SDNU	0 4111	4	0 4572	7	0 5374	6	0 5018	17
ODINO	0.4111	-	0.4072	,	0.0074	0	0.0010	17
	0.000	c	0 4000	F	0 5004	0	0 7554	0
CIL	0.392	6	0.4886	5	0.5024	8	0.7554	8
MedLabs	0.3397	8	0.3705	8	0.2637	10	0.7863	5
AIMIA	0.3792	7	0.3283	10	0.2733	9	0.7662	6
AIIVIIA	0.3792	1	0.3263	10	0.2733	9	0.7002	0

Possible Reasons

Conclusion

- We introduced a feasible method based on Faster RCNN to perform lesion-level DR detection from eye fundus images. Our method can accurately detect microaneurysms.
- We applied a new GAN based framework on DR lesion segmentation task. Our method can further improve the performance of the segmentation for MA and EX.