Deep Prediction for Uber Self-Driving Cars

Advisor: Prof. Jeff Schneider

Team: Abhay Gupta, Nitin Singh

Motivation

Predicting behavior of traffic actors (vehicles/pedestrians/bicyclists) to prevent accidents and aid better planning for Self-Driving Vehicles (SDVs)

Problem

Simultaneously predict all possible trajectories of traffic actors given HD Maps of the surroundings of a SDV

Solution

- 1. Traditional Methods:
 - a. Constant Velocity Model
 - b. Unscented/Extended Kalman Filter
- 2. Deep Learning Methods:
 - a. Intermediate Representations
 - b. Model interactions of traffic actors
 - c. Model non-linear structure of motion

Past

Comments from Past

- 1) Why not handle pedestrians?
 - a) This is the current focus of our research
- 2) Is there a combined strategy for pedestrians and cars?
 - a) The spatial resolution encoded for a pedestrian vs a car is very different.
 - b) It is better to use two different models than compromise on the predictions
 - c) In the future, based on changes in input representation, we may come up with a strategy.
- 3) Why not work directly with multiple sensors which self-driving cars use?
 - a) We build intermediate representations from these sensors and predict using them.
 - b) It is not optimal to use raw data for the trajectory prediction problem.
 - c) It makes the model heavy and real-time inference is hindered.

Dataset 1 - BIWI Pedestrian

HOTEL

S. Pellegrini, A. Ess, and L. Van Gool. Improving data association by joint modeling of pedestrian trajectories and groupings. In Computer Vision–ECCV 2010, pages 452–465.Springer, 2010

ETH

Dataset 2 - UCY Crowd

ZARA

UNIVERSITY

L. Leal-Taix e, M. Fenzi, A. Kuznetsova, B. Rosenhahn, and S. Savarese. Learning an image-based motion context for multiple people tracking. InCVPR, pages 3542–3549. IEEE,2014

Model 1 - Constant Velocity Model (CVM)

- 1. Assumes pedestrians walk with same velocity and in the same direction as their previous two timesteps.
- 2. We compute the velocity vector and propagate it for the future timesteps.

Schöller, Christoph, et al. "The Simpler the Better: Constant Velocity for Pedestrian Motion Prediction." *arXiv preprint arXiv:1903.07933* (2019).

Model 2 - Social LSTM¹

The probabilities are modeled using Mixture Density Networks²

1 - Alahi, Alexandre, et al. "Social lstm: Human trajectory prediction in crowded spaces." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2016.

2 - Bishop, Christopher M. *Mixture density networks*. Technical Report NCRG/4288, Aston University, Birmingham, UK, 1994.

Present

Model 1 - Social Attention

A spatio-temporal graph representation for pedestrian motion.

Vemula, Anirudh, Katharina Muelling, and Jean Oh. "Social attention: Modeling attention in human crowds." 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018.

The factor graph representation of the spatio-temporal graph is trained using Structural-RNN¹

 $egin{aligned} x_u^t &= ext{Node value at time t} \ x_u^{t+1} &= ext{Node value at time t+1} \ x_{uv} &= ext{Spatial Edge} \ x_{uu} &= ext{Temporal Edge} \end{aligned}$

2- Jain, Ashesh, et al. "Structural-RNN: Deep learning on spatio-temporal graphs." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2016.

Model 2 - Social GAN

- 1. Scene-scale Pooling instead of neighborhood pooling
- 2. GANs emulate more natural trajectories

Gupta, Agrim, et al. "Social gan: Socially acceptable trajectories with generative adversarial networks." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2018.

- 1. Max-Pool helps to learn order invariant symmetric representations similar to PointNet¹
- 2. Introduction to Variety Loss

$$\mathcal{L}_{variety} = \min_k \left\| Y_i - \hat{Y}_i^{(k)} \right\|_2$$

 Y_i - Ground Truth Prediction
 $\hat{Y}_i^{(k)}$ - Model Prediction after sampling $z \sim \mathcal{N}(0, 1)$
 k - hyper-prarameter

1 - Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2017.

Current Progress

- 1. Social GAN implementation and evaluation done
- 2. Visualizing latent space manifolds for Social GAN ongoing.
- 3. Social Attention implementation done; evaluation ongoing.
- 4. Developing visualization module for all results.

Performance

- <u>Average Displacement Error (ADE)</u> The mean square error (MSE) over all estimated points of a trajectory and the true points
- <u>Final Displacement Error (FDE)</u> The distance between the predicted final destination and the true final destination at end of the prediction period

- Error Reported in <u>meters</u>
- Annotations are done in <u>0.4 seconds</u> each
- Predictions are done for 2 different lengths: <u>8/12 timesteps</u> (3.2/4.8 secs)

Prediction Length (8 timesteps) - ADE / FDE

	СЛМ	Vanilla LSTM	Social LSTM	Social GAN (k=20)
BIWI ETH	0.62 / 1.37	0.70 / 1.45	0.73 / 1.48	0.57 / 1.11
BIWI Hotel	0.27 / 0.54	0.55 / 1.17	0.49 / 1.01	0.36 / 0.72
UCY Zara1	0.25 / 0.56	0.25 / 0.53	0.27 / 0.56	0.21 / 0.41
UCY Zara2	0.23 / 0.49	0.31 / 0.65	0.33 / 0.70	0.21 / 0.43
UCY University	0.27 / 0.60	0.36 / 0.77	0.41 / 0.84	0.33 / 0.70

All errors are reported in meters

Prediction Length (12 timesteps) - ADE / FDE

	СVМ	Vanilla LSTM	Social LSTM	Social GAN (k=20)
BIWI ETH	0.86 / 2.38	1.09 / 2.41	1.09 / 2.35	0.70 / 1.28
BIWI Hotel	0.37 / 0.81	0.86 / 1.91	0.79 / 1.76	0.48 / 1.02
UCY Zara1	0.41 / 0.98	0.41 / 0.88	0.47 / 1.00	0.34 / 0.69
UCY Zara2	0.36 / 0.82	0.52 / 1.11	0.56 / 1.17	0.31 / 0.65
UCY University	0.46 / 1.07	0.61 / 1.31	0.67 / 1.40	0.56 / 1.18

All errors are reported in meters

Future

Future Work 1 - Incorporating Scene Images & Velocity of Pedestrians

- 1. Use Social-GAN¹ base network
- 2. Modify to implement Velocity information to the network
 - a. Adds non-contextual cues; especially when pedestrians speed-up across frames²
- 3. Modify to incorporate Images
 - a. This will provide scene-level information to the model

1 - Gupta, Agrim, et al. "Social gan: Socially acceptable trajectories with generative adversarial networks." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2018.

2 - Xue, Hao, Du Huynh, and Mark Reynolds. "Location-Velocity Attention for Pedestrian Trajectory Prediction." 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2019.

Velocity Model (LVA-LSTM)

Xue, Hao, Du Huynh, and Mark Reynolds. "Location-Velocity Attention for Pedestrian Trajectory Prediction." 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2019.

Future Work 2 - Autonomous Driving

Srikanth, Shashank, Junaid Ahmed Ansari, and Sarthak Sharma. "INFER: INtermediate representations for FuturE pRediction." *arXiv* preprint arXiv:1903.10641 (2019).

Proposed Timeline

Q&A