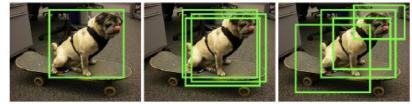
Adversarial Learning

Advisor: Kris Kitani Name: Qiqi Xiao Date: 01/26/2018

ADA(Adversarial data augmentation): A Game-Theoretic Perspective on Data Augmentation for Object Detection

- Introduce an adversarial function to generate (some distribution of) maximally perturbed version of the groundtruth which is hardest for the predictor to learn.
 - Why data augmentation: ground-truth wrong/not accurate....
 - How to add data augmentation: random translation, flipping, scaling...(manually add perturbations)
 - Problems: can be error-prone
- Adversary is not free but with constraints [e.g. features(new bb) ≈ features(ori bb)].
- First work to provide theoretic basis for data augmentation in terms of an adversarial two player zero-sum game.
 - predictor(maximize performance) vs constrained adversary(minimize expected performance).



Single Ground Truth

Random Augmentation

Adversarial Augmentation

Problem Formulation

• Annotation distribution without augmentation:

$$p(y|x) = \begin{cases} 1, & if \ y = y \\ 0, & otherwise \end{cases}$$

- Annotation distribution after data augmentation:
 p (y|x): a soft distribution over labels
- Expected loss:

 $\sum_{y \in \mathcal{Y}} P(y|\boldsymbol{x}) \ell(\hat{y}, y).$

• Probabilistic predictor:

f(y|x)

Expected loss(Empirical Risk Minimization)

 $\min_{f \in \Gamma} \sum_{x \in \mathcal{D}} \overbrace{y'}^{expected loss for input x} P(y|x) \underbrace{\sum_{y'} P(y|x)\ell(y',y)}_{y}.$

- Expected loss under worst case distribution
 - $\rightarrow \text{Adversarial Data Augmentation} \\ \min_{f \in \Gamma} \sum_{x \in \mathcal{D}} \sum_{y'} f(y'|x) \max_{P(y|x)} \sum_{y} P(y|x) \ell(y', y). \\ (\text{Unreasonable})$

Game Formulation

Definition

The value/payoff of the game for x (the expected loss)

$$\mathbb{E}_{\substack{y'|x \sim f \\ y|x \sim P}} \left[\ell(y', y) \right] = \sum_{\substack{y', y \\ y' \in \mathcal{F}}} f(y'|x) \ell(y', y) P(y|x)$$
$$= \mathbf{f}^\top \mathbf{G} \mathbf{p}.$$

f: the vector of probabilities obtained from the predictor over all labels

G: the game matrix where each element contains the loss between two labels

p: the annotation distribution vector

Primal Adversarial Data Augmentation(ADA-P):

$$\min_{f} \max_{P} \mathbb{E}_{\substack{x \sim \mathcal{D}, \\ y \mid x \sim P}} \left[\ell(y', y) \right] \text{ such that:}$$

$$\mathbb{E}_{\substack{x \sim \mathcal{D}, \\ y \mid x \sim P}} \left[\phi(y, x) \right] = \mathbb{E}_{y, x \sim \mathcal{D}} \left[\phi(y, x) \right] \quad \text{where}$$

$$\mathbb{E}_{y,x\sim\mathcal{D}}\left[\phi(y,x)\right] = \frac{1}{N}\sum_{n=1}^{N}\phi(y_n,x_n),$$

The Dual Adversarial Data Augmentation(ADA-D):

$$\begin{split} \min_{\theta} \mathbb{E}_{\mathbf{x}, y^* \sim \mathcal{D}} \Big[\min_{f} \max_{P} \mathbb{E}_{y' \sim P} \Big[\ell(y', y) \\ &+ \theta^{\top} \{ \phi(y, \boldsymbol{x}) - \phi(y^*, \boldsymbol{x}) \} \Big] \Big]. \end{split}$$

Adversarial Object Localization

Label Space: y is the 4 coordinates of a bounding box

distribution approximation \rightarrow discretize the label space Y using a bb proposal algorithm

Feature statistics: $\{\phi(y', x) - \phi(y^*, x)\}$ difference of FC7 features of the VGG16 \rightarrow perceptual loss

Loss function:

$$\ell(y,y') = 1 - \operatorname{IoU}(y,y'), \text{ or } \ell_{t\alpha}(y,y') = \begin{cases} 1 & \operatorname{IoU}(y,y') < \alpha \\ 0 & \operatorname{IoU}(y,y') \ge \alpha, \end{cases} \text{ where } IoU(y,y') = \operatorname{area}(y \cap y')/\operatorname{area}(y \cup y').$$
Game Matrix:
$$\mathbf{G}(y',y) = \ell(y',y) + \theta^{\top} \{\phi(y,x) - \phi(y^*,x)\},$$

$$\mathbf{G} = \begin{bmatrix} y_1' \\ y_2' \\ y_3' \\ y_3' \\ y_4' \\ y_5' \\ \mathbf{G}_{\ell} \end{bmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ \mathbf{G}_{\ell} \\ \mathbf{G}_{\Phi} \end{bmatrix} + \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \\ \end{bmatrix}$$

Nash Equilibria(solution of the game)

A pair of strategies (x, y) is said to be Nash Equilibria iff neither player can increase her expected payoff by unilaterally deviating from her strategy.

$$\max_{\mathbf{p}'} \mathbf{f}^{\top} \boldsymbol{G} \mathbf{p}' \leq \mathbf{f}^{\top} \boldsymbol{G} \mathbf{p} \leq \min_{\mathbf{f}'} \mathbf{f}'^{\top} \boldsymbol{G} \mathbf{p}.$$

$$\bigcup_{v, \mathbf{f} \geq \mathbf{0}} \sup_{v, \mathbf{f} \geq \mathbf{0}} v \text{ such that: } \mathbf{f}^{\top} \boldsymbol{G} \leq v \mathbf{1} \text{ and } \mathbf{f}^{\top} \mathbf{1} = 1; \text{ and}$$

$$\max_{v, \mathbf{p} \geq \mathbf{0}} v \text{ such that: } \boldsymbol{G} \mathbf{p} \geq v \mathbf{1}^{\top} \text{ and } \mathbf{p}^{\top} \mathbf{1} = 1,$$

$$\bigcup$$
Linear programming

Constraint Generation for Large Games

To solve ADA-D without explicitly constructing the entire payoff matrix G.

Key idea: To use a set of the most violated constraints to grow a game matrix that supports the equilibrium distribution, but is much smaller than the full game matrix.

Methods: Double Oracle Algorithm

Reference:

Planning in the Presence of Cost Functions Controlled by the Adversary

Adversarial Prediction Games for Multivariate Losses

Double Oracle Algorithm

Initialization:

R: all strategies the row player has played in previous iterations.

 \overline{C} : of all the columns played by the column player.

Initialize \overline{R} with an arbitrary row.

Initialize \overline{C} with an arbitrary column.

Terminate conditions:

1, r_i is already in R and c_i in C 2, v_u - v_i < ε

On iteration i

- Solve the matrix game where the row player can only play rows in \overline{R} and the column player can only play columns of \overline{C} , using linear programming or any other convenient technique. This provides a distribution p_i over \overline{R} and q_i over \overline{C} .
- The row player assumes the column player will always play q_i , finds an optimal pure strategy $\mathcal{R}(q_i) = r_i$ against q_i , and adds r_i to \bar{R} . Let $v_\ell =$ $V(r_i, q_i)$. Since r_i is a best response we conclude that $\forall p \ V(p, q_i) \ge v_\ell$, and so we have a bound on the value of the game, $V_G = \min_p \max_q V(p, q) \ge$ v_ℓ .
- Similarly, the column player picks $C(p_i) = c_i$, and adds c_i to \bar{C} . We let $v_u = V(p_i, c_i)$ and conclude $\forall q \ V(p_i, q) \leq v_u$, and hence $V_G = \max_q \min_p \leq v_u$.

Algorithm of ADA

Convex optimization(gradient-based methods) Algorithm 1 ADA Equilibrium Computation **Input:** Image x; Parameters θ ; Ground Truth y^* **Output:** Nash equilibrium, (f, p) Pre-processing step, extracting box proposals 1: $\mathcal{Y} \leftarrow \text{EdgeBox}(\boldsymbol{x})$ 2: $\Phi = \text{CNN}(\mathcal{Y}, \boldsymbol{x})$ and CNN features 3: $\boldsymbol{\psi} \leftarrow \boldsymbol{\theta}^{\top} (\Phi - \Phi(\boldsymbol{y}^*))$ 4: $S_p \leftarrow S_f \leftarrow \operatorname{argmax}_{u} \psi(y)$ 5: repeat $(\mathbf{f}, \mathbf{p}, v_p) \leftarrow \text{solveGame}(\psi(\mathcal{S}_p), \text{loss}(\mathcal{S}_f, \mathcal{S}_p))$ 6: $(y_{\text{new}}, v_{\text{max}}) \leftarrow \max_{y} \mathbb{E}_{y' \sim f} [loss(y, y') + \psi(y)]$ 7: 8: if $(v_p \neq v_{\text{max}})$ then Solve Nash equilibrium using linear programming 9: $S_n \leftarrow S_n \cup y_{\text{new}}$ 10: end if $(\mathbf{f}, \mathbf{p}, v_f) \leftarrow \text{solveGame}(\psi(\mathcal{S}_p), \text{loss}(\mathcal{S}_f, \mathcal{S}_p))$ 11: $(y'_{\text{new}}, v_{\min}) \leftarrow \min_{\hat{y}} \mathbb{E}_{y \sim p}[\log(y, y')]$ 12: if $(v_f \neq v_{\min})$ then 13: $S_f \leftarrow S_f \cup y'_{\text{new}}$ 14: end if 15: 16: until $v_p = v_{\text{max}} = v_f = v_{\text{min}}$ 17: return (f, p)

Experiments

Baselines: SSVM and Softmax

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \quad \lambda ||\theta||_2 + \sum_n \xi_n$$
s.t.
$$\theta^{\top} (\phi(y_n^*, \boldsymbol{x}_n) - \phi(y, \boldsymbol{x}_n)) \ge \ell(y_n^*, y) - \xi_n \quad \forall \ y$$

At test time

$$\hat{y} = \operatorname{argmax}_{y} \theta^{\top} \phi(y, \boldsymbol{x})$$

Softmax:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \prod_{n} P(y_{n} | \boldsymbol{x}_{n}; \theta),$$
$$= \underset{\theta}{\operatorname{argmax}} \prod_{n} \frac{e^{\theta^{\top} \phi(y_{n}, \boldsymbol{x}_{n})}}{\sum_{y} e^{\theta^{\top} \phi(y, \boldsymbol{x}_{n})}}$$

$$\hat{y} = \underset{y}{\operatorname{argmin}} \sum_{y' \in \mathcal{Y}} P(y' | \mathbf{x}; \theta) \ell(y, y'),$$

Baseline comparisons with no augmentation

Table 1. No augmentation baseline comparison (IoU>0.5)

Model	ImageNet Object Categories										
WIGUEI	Plane	Bird	Bus	Car	Cat	Cow	Dog	Hors	Moni	Sofa	mAP
ADA+VGG (Ours)											
Softmax+VGG	84.0	86.5	84.0	87.0	70.9	77.5	62.0	72.7	72.0	80.0	77.7
SSVM+VGG	90.0	82.5	82.0	82.0	40.0	87.5	72.0	72.7	90.0	78.0	77.7

Table 2. No augmentation baseline comparison (IoU>0.7)

Model	ImageNet Object Categories										
WIGUEI	Plane	Bird	Bus	Car	Cat	Cow	Dog	Hors	Moni	Sofa	mAP
ADA+VGG (Ours)	58.0	61.5	64.0	91.0	30.9	77.4	58.0	58.2	61.8	61.9	62.3
Softmax+VGG	47.6	45.7	40.0	62.8	20.0	42.5	25.1	25.4	31.4	44.2	38.5
SSVM+VGG	51.8	55.5	44.0	61.7	21.8	54.7	31.6	43.6	56.0	57.3	47.8

Baseline comparisons with augmentation

Table 3.	Effect of	Data A	Augment	ation	(IoU	> 70%))

Augmentation	AlexNet Object Category											
Augmentation	Plane	Bird	Bus	Car	Cat	Cow	Dog	Hors	Moni	Sofa	Avg	
$SSVM_{t50}+VGG$	53.8	57.9	49.7	<u>64.0</u>	22.6	59.9	37.5	45.5	56.7	57.8	50.5	
SSVM _{t60} +VGG	54.7	58.9	52.7	67.7	23.7	64.9	42.0	48.6	57.3	58.4	52.9	
SSVM _{t70} +VGG	56.4	61.6	56.8	70.8	25.4	67.3	49.1	51.9	58.6	58.8	55.7	
SSVM _{t75} +VGG	52.6	61.0	51.7	64.4	20.2	61.2	42.6	44.0	57.3	56.0	51.1	
SSVM _{t80} +VGG	49.8	52.0	44.9	60.3	20.2	55.8	33.1	41.4	55.8	52.7	46.6	
ADA+VGG (Ours)	58.0	61.5	64.0	91.0	30.9	77.4	58.0	58.2	61.8	61.9	62.3	

Using edgebox proposal network to generate bb(s) and filter by IOU as gt(s)

Table 4. Effect of Number of Augmented Data Annotations. ADA outperforms best configuration SSVM+VGG baseline by 12%.

SSVM+VGG								
mAP	77.6	79.7	81.4	83.8	83.7	79.8	75.3	94.2

Top K proposals as gt(s), use 50% IOU as success

Detection Performance Comparison

Correct label + 70% IOU

Table 5. Detection Performance Comparison (IoU > 70%).

Model	Image Net Object Category										
WIGUEI	Plane	Bird	Bus	Car	Cat	Cow	Dog	Hors	Moni	Sofa	Avg
ADA+VGG (Ours)	46.0	55.5	60.0	86.0	25.4	70.0	47.0	52.7	60.0	48.0	55.1
SSVM+VGG	42.0	46.0	38.0	53.0	16.4	52.5	25.0	<u>36.4</u>	42.0	42.0	39.3
Softmax+VGG	40.0	42.5	42.0	55.0	16.4	32.5	16.0	29.1	22.0	34.0	33.0

Goal and plan

- Implement from the original code and do experiments
- Apply adversarial learning data augmentation to train end-to-end detection network
- Apply it to video surveillance applications using computer graphics rendering and then maybe other types of synthetic images (like cell images)

Thank you!

Q&A