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ADA(Adversarial data augmentation): A Game-Theoretic
Perspective on Data Augmentation for Object Detection

e Introduce an adversarial function to generate (some distribution of) maximally perturbed version of
the groundtruth which is hardest for the predictor to learn.
o  Why data augmentation: ground-truth wrong/not accurate....
o How to add data augmentation: random translation, flipping, scaling...(manually add
perturbations)
o Problems: can be error-prone

e Adversary is not free but with constraints [e.g. features(new bb) = features(ori bb)].

e First work to provide theoretic basis for data
augmentation in terms of an adversarial two player
Zero-sum game.

o predictor(maximize performance) vs
constrained adversary(minimize expected
performance).

Single Ground Truth Random Augmentation Adversarial Augmentation



Problem Formulation

Annotation distribution without augmentation:

p(vIX)={1’ yy=y

0, otherwise

Annotation distribution after data augmentation:

p"(y|x): a soft distribution over labels

Expected loss:
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Probabilistic predictor:
f(ylx)

Expected loss(Empirical Risk Minimization)

expected loss for input
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Expected loss under worst case distribution
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Game Formulation

The value/payoff of the game for x (the
expected loss)

Ey e~ €W 0)]= ) F( @)/, y)P(ylx)

yl® ~P R
v,y
= f'Gp.

f: the vector of probabilities obtained from the
predictor over all labels

G: the game matrix where each element
contains the loss between two labels

p: the annotation distribution vector

Definition

Primal Adversarial Data Augmentation(ADA-P):

min max Ea~ o, [€(y,y)]such that:

f Ve ~ f,
yl@ ~ P
Ea . [6(4,2)] = Eyonp [6(y,x)] Where
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The Dual Adversarial Data Augmentation(ADA-D):
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Adversarial Object Localization

Label Space: vy is the 4 coordinates of a bounding box

distribution approximation — discretize the label space Y using a bb proposal algorithm

Feature statistics: {¢(y/, ) — ¢(
Loss function:

y,y) =1-10U(y,y'), O ti(y,y) ={

Game Matrix:

G, y) =Ly, y) + 0" {d(y, ) — B(y*, )},

1

IoU(y,7) < a
0 IoU(y,y) > a,

y*,x)} difference of FC7 features of the VGG16 — perceptual loss

where ToU(y,y’) = area(y Ny')/area(y Uy’).
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Nash Equilibria(solution of the game)

A pair of strategies (x, y) is said to be Nash Equilibria iff neither player can increase her expected payoff
by unilaterally deviating from her strategy.

maxf  Gp' < FTG@p < 11}111 f’TGp.
p/ ’
min v such that: f' G < vl and £f11 = 1; and

v,f>0
max v such that: Gp > v1 ' and pTl = 1;

v,p=>0

Linear programming



Constraint Generation for Large Games

To solve ADA-D without explicitly constructing the entire payoff matrix G.

Key idea: To use a set of the most violated constraints to grow a game matrix that supports the
equilibrium distribution, but is much smaller than the full game matrix.

Methods: Double Oracle Algorithm
Reference:
Planning in the Presence of Cost Functions Controlled by the Adversary

Adversarial Prediction Games for Multivariate Losses



Double Oracle Algorithm

Initialization:

R: all strategies the row player has played in
previous iterations.

C: of all the columns played by the column
player.

Initialize R with an arbitrary row.

Initialize C with an arbitrary column.

Terminate conditions:

1. r.is already in R and c, in C
2.v,v, <€

On iteration i

e Solve the matrix game where the row player can

only play rows in R and the column player can
only play columns of C, using linear programming
or any other convenient technique. This provides
a distribution p; over R and ¢; over C.

The row player assumes the column player will
always play ¢;, finds an optimal pure strategy
R(g;) = r; against g;, and adds r; to R. Let vy =
V(ri,qi). Since r; is a best response we conclude
that Vp V(p,q;) > ve, and so we have a bound on
the value of the game, Vi = min, max, V(p,q) >
Vyp.

Similarly, the column player picks C(p;) = ¢;, and
adds ¢; to C. We let v, = V(p;, ¢;) and conclude
Vq V(p;,q) < vy, and hence Vi = max, min, <
Ui



Algorithm of ADA

Convex optimization(gradient-based methods)

Algorithm 1 ADA Equilibrium Computation

Input: Image x; Parameters #7Ground Truth y*
Output: Nash equilibrium, (f, p)
I: ¥« EdgeBox(ex) Pre-processing step, extracting box proposals
2: & =CNN(),x) and CNN features
3907 (- 2(y"))
: Sp ¢ Sy < argmax, ¥(y)
: repeat

4
5

6: (f,p,vp) ¢ solveGame(Y(S,),loss(Sy,Sp))

7: (ynew, UmaX) T maXy Ey/Nf[lOSS(y, y,) + 1/)(3/)] \
8:  if (vp 7 Umax) then

9

; 8485\ T Solve Nash equilibrium using linear programming
10:  endif /
11:  (f,p,vy) < solveGame(¥(Syp),loss(Sf,Sp))

122 (Y pews Umin) < ming E,,[loss(y, y')]
13:  if (vf # Umin) then

14: S SrUY 1w

15:  endif

16: until vp = Vmax = V§ = Umin

17: return (f,p)




Experiments

Baselines: SSVM and Softmax

SSVM: Structured output SVM At test time

6 = argmin )\||9||2+Z§n (13)
0
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Softmax:
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Baseline comparisons with no augmentation

Table 1. No augmentation baseline comparison (IoU>0.5)

Model ImageNet Object Categories

Plane| Bird| Bus| Car| Cat| Cow |Dog|Hors |Moni |Sofa||mAP
ADA+VGG (Ours)| 92.0( 93.5(92.0/100.0|89.1{100.0(93.0| 96.4| 96.0|90.0|| 94.2
Softmax+VGG 84.0( 86.5(84.0| 87.0({70.9| 77.5|62.0|72.7| 72.0|80.0|| 77.7
SSVM+VGG 90.0| 82.5(82.0| 82.0{40.0| 87.5(72.0|72.7| 90.0|78.0(| 77.7

Table 2. No augmentation baseline comparison (IoU>0.7)

ImageNet Object Categories
Plane | Bird | Bus| Car| Cat|Cow | Dog|Hors|Moni [Sofa || mAP
ADA+VGG (Ours)| 58.0/61.5/64.0{91.0(30.9|77.4|58.0| 58.2| 61.8(/61.9| 62.3
Softmax+VGG 47.6145.7(40.0{62.8|120.0|142.5(25.1| 25.4| 31.4|44.2|| 38.5
SSVM+VGG 51.8155.5|44.0|161.7|21.8|54.7|31.6| 43.6| 56.0|57.3|| 47.8

Model




Baseline comparisons with augmentation

Table 3. Effect of Data Augmentation (IoU > 70%)

Wit AlexNet Object Category

Plane | Bird | Bus| Car| Cat|Cow |Dog|Hors |Moni|Sofa || Avg
SSVM50+VGG 53.8157.9(49.7|64.0|22.659.9|37.5| 45.5| 56.7|57.8]|50.5
SSVMt60+VGG 54.7(58.9|52.7(67.7|23.7|64.9(42.0| 48.6| 57.3|58.4((52.9
SSVMi70+VGG 56.4/61.656.8|70.8|25.4| 67.3|49.1| 51.9| 58.6|58.8||55.7
SSVM;75+VGG 52.6|61.0(51.7|64.4|120.2|61.2|42.6| 44.0| 57.3|56.0||51.1
SSVMg0+VGG 49.8(52.0(44.9160.320.2|55.8|33.1| 41.4| 55.8(52.7||46.6
ADA+VGG (Ours)| 58.0/61.5/64.0/91.0({30.9|77.4|58.0| 58.2| 61.8/61.9|/62.3

Table 4. Effect of Number of Augmented Data Annotations. ADA

outperforms best configuration SSVM+VGG baseline by 12%.

SSVM+VGG

k=1 k=2

k=4

k=6

k=8

k=10

k=12

ADA+VGG

mAP

1798 100

81.4

83.8

83.7

79.8

75.3

94.2

Using edgebox
proposal network to
generate bb(s) and
filter by IOU as gt(s)

Top K proposals as
gt(s), use 50% IOU as
success



Detection Performance Comparison

Correct label + 70% 10U

Table 5. Detection Performance Comparison (IoU > 70%).

Model Image Net Object Category

Plane |Bird | Bus| Car| Cat|Cow |Dog |Hors [Moni|Sofa|| Avg
ADA+VGG (Ours)| 46.0|55.5/60.0|86.0(25.4|70.0|47.0| 52.7| 60.0|48.0||55.1
SSVM+VGG 42.0146.038.0|53.0{16.4(52.5|25.0| 36.4| 42.0{42.0{{39.3
Softmax+VGG 40.0142.5(42.0(55.0|16.4|32.5|16.0| 29.1| 22.0(34.0(|33.0




Goal and plan

e Implement from the original code and do experiments

e Apply adversarial learning data augmentation to train end-to-end detection
network

e Apply it to video surveillance applications using computer graphics rendering

and then maybe other types of synthetic images (like cell images)



Thank youl!

Q&A



